Home
Class 9
MATHS
If 4 cos^(2) x = 3 and x is an acute ang...

If `4 cos^(2) x = 3 and x` is an acute angle find the value of :
(i) x
(ii) `cos^(2)x + cot^(2)x`
(iii) cos 3x
(iv) sin 2x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the question. ### Given: \[ 4 \cos^2 x = 3 \] where \( x \) is an acute angle. ### Step 1: Solve for \( \cos^2 x \) We start by isolating \( \cos^2 x \): \[ \cos^2 x = \frac{3}{4} \] ### Step 2: Find \( \cos x \) Next, we take the square root of both sides to find \( \cos x \): \[ \cos x = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] Since \( x \) is an acute angle, we take the positive root. ### Step 3: Determine the angle \( x \) We know that: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] Thus, we can conclude: \[ x = 30^\circ \] ### Step 4: Calculate \( \cos^2 x + \cot^2 x \) First, we need to find \( \cot x \): \[ \cot x = \frac{\cos x}{\sin x} \] To find \( \sin x \), we use the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \sin^2 x = 1 - \cos^2 x = 1 - \frac{3}{4} = \frac{1}{4} \] Thus, \[ \sin x = \sqrt{\frac{1}{4}} = \frac{1}{2} \] Now we can find \( \cot x \): \[ \cot x = \frac{\cos x}{\sin x} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3} \] Now, we calculate \( \cot^2 x \): \[ \cot^2 x = (\sqrt{3})^2 = 3 \] Now we can find \( \cos^2 x + \cot^2 x \): \[ \cos^2 x + \cot^2 x = \frac{3}{4} + 3 = \frac{3}{4} + \frac{12}{4} = \frac{15}{4} \] ### Step 5: Calculate \( \cos 3x \) Using the angle \( x = 30^\circ \): \[ \cos 3x = \cos(3 \times 30^\circ) = \cos 90^\circ = 0 \] ### Step 6: Calculate \( \sin 2x \) Using the angle \( x = 30^\circ \): \[ \sin 2x = \sin(2 \times 30^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2} \] ### Final Answers: (i) \( x = 30^\circ \) (ii) \( \cos^2 x + \cot^2 x = \frac{15}{4} \) (iii) \( \cos 3x = 0 \) (iv) \( \sin 2x = \frac{\sqrt{3}}{2} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (3 MARKS QUESTIONS )|6 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (4 MARKS QUESTIONS )|5 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

If 4cos^(2)x=3 and x is an acute angle, find the value of : x

If 4cos^(2)x=3 and x is an acute angle, find the value of : sin2x

If 4cos^(2)x=3 and x is an acute angle, find the value of : sin2x

If 4cos^(2)x=3 and x is an acute angle, find the value of : cos3x

If 4cos^(2)x=3 and x is an acute angle, find the value of : cos^(2)x+cot^(2)x

If cos 3x= 0 and x is acute find the value of : sin x

If cos 3x= 0 and x is acute find the value of : cos 2x

If cos 3x= 0 and x is acute find the value of : cot^(2) x- cosec ^(2)x

If 4sin^(2)x^(@)-3=0" and "x^(@) is an acute angle, find : (i) sinx^(@) " (ii) "x^(@)

If 4sin^(2)x^(@)-3=0" and "x^(@) is an acute angle, find : (i) sinx^(@) " (ii) "x^(@)