Home
Class 9
MATHS
Evaluate without using trigonometric tab...

Evaluate without using trigonometric tables :
`tan 20^(@) tan 40^(@) tan 50^(@) tan 70^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \tan 20^\circ \tan 40^\circ \tan 50^\circ \tan 70^\circ \) without using trigonometric tables, we can use the properties of trigonometric functions. ### Step-by-Step Solution: 1. **Identify Relationships**: We know that: \[ \tan(90^\circ - x) = \cot x \] This means that: \[ \tan 70^\circ = \cot 20^\circ \quad \text{and} \quad \tan 50^\circ = \cot 40^\circ \] 2. **Rewrite the Expression**: Using the relationships identified, we can rewrite the expression: \[ \tan 20^\circ \tan 40^\circ \tan 50^\circ \tan 70^\circ = \tan 20^\circ \tan 40^\circ \cot 40^\circ \cot 20^\circ \] 3. **Use the Cotangent Identity**: Recall that: \[ \cot x = \frac{1}{\tan x} \] Therefore: \[ \cot 40^\circ = \frac{1}{\tan 40^\circ} \quad \text{and} \quad \cot 20^\circ = \frac{1}{\tan 20^\circ} \] 4. **Substitute Cotangent Values**: Substitute the cotangent values into the expression: \[ = \tan 20^\circ \tan 40^\circ \cdot \frac{1}{\tan 40^\circ} \cdot \frac{1}{\tan 20^\circ} \] 5. **Simplify the Expression**: Now, we can simplify: \[ = \tan 20^\circ \cdot \frac{1}{\tan 20^\circ} \cdot \tan 40^\circ \cdot \frac{1}{\tan 40^\circ} = 1 \cdot 1 = 1 \] ### Final Result: Thus, the value of \( \tan 20^\circ \tan 40^\circ \tan 50^\circ \tan 70^\circ \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (4 MARKS QUESTIONS )|5 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

(tan8 0^(@)-tan1 0^(@))/tan70^(@)

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

Prove that : tan 70^(@) = tan 20^(@) + 2 tan 50^(@)

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

Evaluate : tan 40^(@)xxtan 50^(@)

tan 70^(@) -tan 20^(@) - 2 tan 40^(@) = 4 tan 10 ^(@).

Evaluate without using trigonometric tables : "cos"^(2) 26^(@)+"cos" 64^(@)"sin" 26^(@)+("tan" 36^(@))/("cot" 54^(@))

The value of tan 20^(@) tan 40^(@) tan 80^(@) is equal to