Home
Class 9
MATHS
Show that : (i) tan 10^(@) tan 15^(@) ...

Show that :
(i) `tan 10^(@) tan 15^(@) tan 75^(@) tan 80^(@) = 1`
(ii) `sin 42^(@) sec 48^(@) + cos 42^(@) "cosec 48"^(@) = 2`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### (i) Show that: \[ \tan 10^\circ \tan 15^\circ \tan 75^\circ \tan 80^\circ = 1 \] **Step 1: Use the identity for complementary angles.** We know that: \[ \tan(90^\circ - \theta) = \cot \theta \] Thus, we can rewrite \(\tan 75^\circ\) and \(\tan 80^\circ\): \[ \tan 75^\circ = \cot 15^\circ \quad \text{(since } 75^\circ = 90^\circ - 15^\circ\text{)} \] \[ \tan 80^\circ = \cot 10^\circ \quad \text{(since } 80^\circ = 90^\circ - 10^\circ\text{)} \] **Step 2: Substitute the identities into the equation.** Now substituting these identities into the original equation: \[ \tan 10^\circ \tan 15^\circ \tan 75^\circ \tan 80^\circ = \tan 10^\circ \tan 15^\circ \cot 15^\circ \cot 10^\circ \] **Step 3: Simplify the expression.** Using the identity \(\tan \theta \cdot \cot \theta = 1\): \[ = (\tan 10^\circ \cot 10^\circ) \cdot (\tan 15^\circ \cot 15^\circ) = 1 \cdot 1 = 1 \] **Conclusion:** Thus, we have shown that: \[ \tan 10^\circ \tan 15^\circ \tan 75^\circ \tan 80^\circ = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (3 MARKS QUESTIONS )|7 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Show that: tan 10^(@)tan 15^(@) tan 75^(@)tan 80^(@)=1

tan 6 ^(@) tan 42 ^(@) tan 66 ^(@) tan 78^(@) =1

Show that: sin 42^(@)sec 48^(@)+cos 42^(@)cosec 48^(@)=2

tan 75 ^(@) - tan 30^(@)- tan 75^(@) tan 30^(@) =1.

Evaluate: sin 42^(@)sin 48^(@)-cos 42^(@)cos 48^(@)

Show that tan48^(@) tan 23^(@) tan 42^(@) tan 67^(@) =1 .

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

Evaluate : (i) (cos 55^(@))/(sin 35^(@)) + (cot 35^(@))/(tan 55^(@)) (ii) sin 42^(@) sin 48^(@) - cos 42^(@) cos 48^(@)

Shown that : tan48^(@)tan23^(@)tan42^(@)tan67^(@)=1

Prove that tan 12^@ tan 24^@ tan 48^@ tan 84^@ = 1 .