Home
Class 9
MATHS
A triangle ABC is right angled at B. Fin...

A triangle ABC is right angled at B. Find the value of `(sec A.sin C - tan A.tan C)/(sin B)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((\sec A \cdot \sin C - \tan A \cdot \tan C) / \sin B\) for triangle ABC, which is right-angled at B. ### Step-by-Step Solution: 1. **Identify the Angles and Sides**: In triangle ABC, since it is right-angled at B: - \( \angle A + \angle C = 90^\circ \) - Therefore, \( \sin C = \cos A \) and \( \tan C = \cot A \). 2. **Express Secant and Tangent**: - The secant of angle A is given by: \[ \sec A = \frac{1}{\cos A} \] - The tangent of angle A is given by: \[ \tan A = \frac{\sin A}{\cos A} \] - The tangent of angle C can be expressed as: \[ \tan C = \frac{\sin C}{\cos C} = \frac{\cos A}{\sin A} = \cot A \] 3. **Substituting Values into the Expression**: Substitute \(\sec A\), \(\sin C\), \(\tan A\), and \(\tan C\) into the expression: \[ \sec A \cdot \sin C = \frac{1}{\cos A} \cdot \cos A = 1 \] \[ \tan A \cdot \tan C = \tan A \cdot \cot A = \frac{\sin A}{\cos A} \cdot \frac{\cos A}{\sin A} = 1 \] 4. **Putting It All Together**: Now substitute these results back into the original expression: \[ \frac{\sec A \cdot \sin C - \tan A \cdot \tan C}{\sin B} = \frac{1 - 1}{\sin B} = \frac{0}{\sin B} = 0 \] ### Final Answer: The value of the expression \((\sec A \cdot \sin C - \tan A \cdot \tan C) / \sin B\) is \(0\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (3 MARKS QUESTIONS )|7 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

A triangle ABC is right angled at B, find the value of (sec A . cosec C - tan A . cot C)/(sin B)

If triangle ABC is right angled at C, then the value of sec (A+B) is

In triangle ABC, right-angled at B. if tanA=1/(sqrt(3)) find the value of: (i) sin A cos C+cos A sin C (ii) cos A cos C sin A sin C

In a right angled triangle ABC, write the value of sin^2 A + sin^2 B+ sin^2C

In Delta ABC , angle B = 90^(@) find the values of : cos A cos C -sin A sin C

In a right triangle ABC , right angled at B , the ratio of A BtoA C is 1:sqrt(2) . Find the values of (2tanA)/(1+tan^2A) and (ii) (2tanA)/(1-tan^2A)

In Delta ABC , angle B = 90^(@) find the values of : sin A cos C + cos A sin C

In a right triangle ABC, right angled at B . The ratio of AB to AC = 1 : sqrt2 , find that the value of (2 tan A)/(1+tan ^(2)A )

In a right triangle A B C right angled at B , /_A C B=theta , A B=2c m and B C=1\ c m . Find the value of sin^2theta+tan^2theta .

If any triangle ABC, find the value of asin(B-C)+b sin(C-A)+c sin(A-B)dot