Home
Class 11
MATHS
The value of tan(pi+x)tan(pi-x)cot^(2)x ...

The value of `tan(pi+x)tan(pi-x)cot^(2)x` is

A

0

B

1

C

`-1`

D

Not defined

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION B |10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION C |10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION C QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

STATEMENT -1 : The value of tan^(-1)x+tan^(-1)(1/x)=pi/2, AA x in R -{0} . and STATEMENT -2 : The value of tan^(-1).(1/x)={:{(cot^(-1)x,x gt0),(-pi+cot^(-1)x,x lt0):}

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

Find the value tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

If x in ( - pi/2, pi/2) , then the value of tan^(-1) ((tan x)/4) + tan^(-1) ((3 sin 2x)/(5 + 3 cos 2x)) is

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

(sec2x-tan2x) equals a) tan(x-pi/4) b) tan(pi/4-x) c) cot(x-pi/4) d) tan^2(x+pi/4)

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

In (0,pi//2)tan^(m)x+cot^(m)x attains