Home
Class 11
MATHS
prove that sin2x+2sin4x+sin6x=4cos^(2)x....

prove that `sin2x+2sin4x+sin6x=4cos^(2)x.sinx`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sin 2x + 2\sin 4x + \sin 6x = 4\cos^2 x \sin x \), we will start with the left-hand side and manipulate it to reach the right-hand side. ### Step 1: Start with the left-hand side We have: \[ \sin 2x + 2\sin 4x + \sin 6x \] ### Step 2: Use the sine addition formula We can express \( \sin 6x \) in terms of \( \sin 2x \) and \( \sin 4x \): \[ \sin 6x = \sin(2x + 4x) = \sin 2x \cos 4x + \cos 2x \sin 4x \] ### Step 3: Substitute \( \sin 6x \) back into the equation Substituting this into the left-hand side gives: \[ \sin 2x + 2\sin 4x + (\sin 2x \cos 4x + \cos 2x \sin 4x) \] ### Step 4: Combine like terms Now we can combine the terms involving \( \sin 2x \): \[ \sin 2x (1 + \cos 4x) + 2\sin 4x + \cos 2x \sin 4x \] ### Step 5: Factor out common terms Notice that we can factor \( \sin 4x \) from the last two terms: \[ \sin 2x (1 + \cos 4x) + \sin 4x (2 + \cos 2x) \] ### Step 6: Use double angle identities Using the double angle identity, we know that: \[ 1 + \cos 4x = 2\cos^2 2x \] and \[ 2 + \cos 2x = 2(1 + \frac{1}{2}\cos 2x) = 2\cos^2 x \] ### Step 7: Substitute back into the equation Now substituting these identities back, we have: \[ \sin 2x (2\cos^2 2x) + \sin 4x (2\cos^2 x) \] ### Step 8: Factor out \( 2 \) Factoring out 2 gives: \[ 2(\sin 2x \cos^2 2x + \sin 4x \cos^2 x) \] ### Step 9: Recognize \( \sin 2x \) and \( \sin 4x \) Recall that: \[ \sin 2x = 2\sin x \cos x \] and \[ \sin 4x = 2\sin 2x \cos 2x = 4\sin x \cos x \cos 2x \] ### Step 10: Substitute and simplify Substituting these back into our equation: \[ 2(2\sin x \cos x \cos^2 2x + 4\sin x \cos x \cos^2 x) \] ### Step 11: Factor out \( 4\sin x \) Factoring out \( 4\sin x \) gives: \[ 4\sin x (\cos^2 2x + \cos^2 x) \] ### Step 12: Use the identity Using the identity \( \cos^2 2x + \cos^2 x = 1 \) leads us to: \[ 4\sin x \] ### Conclusion Thus, we have shown: \[ \sin 2x + 2\sin 4x + \sin 6x = 4\cos^2 x \sin x \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION B |10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION C |10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION C QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin2x+2sin4x+sin6x=4cos^2xsin4

Prove that : sin 2x + 2 sin 4x + sin 6x = 4 cos^2 x sin 4x .

Prove that: (sinx-sin3x)/(sin^2x-cos^2x)=2sinx

Prove that : (sinx-sin3x)/(sin^(2)x-cos^(2)x) = 2sinx

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

Prove that: \ sin3x+sin2x-sin x=4sin xcos(x/2)cos((3x)/2)

Prove that sinx + sin3x + sin5x+ sin7x=4cosxcos2xsin4x

Prove that: sin^2 6x-sin^2 4x=sin2xsin10 x

Prove that : sin^2 6x-sin^2 4x=sin 2x\ sin\ 10 x

Prove that : sin^(2) 6x - sin^(2)4x = sin 2x *sin10x