Home
Class 11
MATHS
Evaluate the left hand and right hand li...

Evaluate the left hand and right hand limits of the function defined by
`f(x)={(1+x^(2)", if "0lexle1),(2-x^(2)", if "xgt1):}" at "x=1`
also, show that `lim f(x)`does not exist.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION B QUESTIONS|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION C QUESTIONS|8 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION C |10 Videos
  • SELF ASSESSMENT PAPER 3

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the left- and right-hand limits of the function defined f(x)={{:(1+x^(2)",if "0lexlt1),(2-x", if" xgt1):}"at "x=1. "Also, show that lim_(xto1) f(x) does not exist.

Evaluate the left-and right-hand limits of the function defined by f(x)={(1+x^2, 0lex<1), (2-x ,x gt1):} at x=1 Also, show that lim_(xrarr1)f(x) does not exist

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4, 0,x=4 ,at x=4

The function f is defined by f(x)={{:(x+3" if ",xlt1),(x^(2)" if ",xge1):} . Find f(-5),f(1), and f(3) .

A function f is defined by f(x) = x^(2) + 1 . Find f(0), f(5), f(10).

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

If f(x)={{:(x",",0lexle1),(x+a",",xgt1):} then

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .