Home
Class 11
MATHS
If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+...

If `y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!)`, then show that `(dy)/(dx)+(x^(n))/(n!)=y`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION B QUESTIONS|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION C QUESTIONS|8 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION C |10 Videos
  • SELF ASSESSMENT PAPER 3

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If y=(x+sqrt(1+x^2))^n , then show that (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=n^2y

If y=A e^(m x)+B e^(n x) , show that (d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0 .

Solve: (dy)/(dx)+y/x=x^n

If x^m y^n=(x+y)^(m+n), prove that (dy)/(dx)=y/x .