Home
Class 11
MATHS
lim(xrarr1)(sqrt(1+x)-sqrt(1-x))/(1+x) i...

`lim_(xrarr1)(sqrt(1+x)-sqrt(1-x))/(1+x)` is equal to

A

(i) `(1)/(sqrt(3))`

B

(ii) `(1)/(sqrt(2))`

C

(iii) `sqrt(3)`

D

(iv) `sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \frac{\sqrt{1+x} - \sqrt{1-x}}{1+x} \), we can follow these steps: ### Step 1: Identify the limit We start with the limit expression: \[ \lim_{x \to 1} \frac{\sqrt{1+x} - \sqrt{1-x}}{1+x} \] ### Step 2: Substitute \( x = 1 \) If we directly substitute \( x = 1 \), we get: \[ \frac{\sqrt{1+1} - \sqrt{1-1}}{1+1} = \frac{\sqrt{2} - 0}{2} = \frac{\sqrt{2}}{2} \] However, we need to check if this leads to an indeterminate form. ### Step 3: Rationalize the numerator To simplify the expression, we can rationalize the numerator: \[ \frac{\sqrt{1+x} - \sqrt{1-x}}{1+x} \cdot \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} = \frac{(1+x) - (1-x)}{(1+x)(\sqrt{1+x} + \sqrt{1-x})} \] This simplifies to: \[ \frac{2x}{(1+x)(\sqrt{1+x} + \sqrt{1-x})} \] ### Step 4: Substitute \( x = 1 \) again Now we can substitute \( x = 1 \) into the simplified expression: \[ \lim_{x \to 1} \frac{2x}{(1+x)(\sqrt{1+x} + \sqrt{1-x})} = \frac{2 \cdot 1}{(1+1)(\sqrt{1+1} + \sqrt{1-1})} = \frac{2}{2(\sqrt{2} + 0)} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Conclusion Thus, the limit evaluates to: \[ \lim_{x \to 1} \frac{\sqrt{1+x} - \sqrt{1-x}}{1+x} = \frac{1}{\sqrt{2}} \] ### Final Answer The final answer is: \[ \frac{1}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION B |11 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION C |10 Videos
  • SAMPLE QUESTION PAPER 3

    ICSE|Exercise SECTION C|5 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(sqrt(1+x)+sqrt(1-x))/(1+x)

lim_(xrarr2)(sqrt(x+2)-sqrt(x-2))/(x+2) is equal to

lim_(xrarr5)(sqrt(x+5)-sqrt(x-5))/(x+5) is equal to

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to