Home
Class 11
MATHS
In a DeltaABC, if angleA=45^(@). angleB=...

In a `DeltaABC`, if `angleA=45^(@). angleB=60^(@) and angleC=75^(@)`, find the ratio of its sides.

Text Solution

AI Generated Solution

The correct Answer is:
To find the ratio of the sides of triangle ABC given the angles, we can use the sine rule, which states that the ratio of the sides of a triangle is proportional to the sine of the angles opposite those sides. ### Step-by-Step Solution: 1. **Identify the Angles**: - Given: - \( \angle A = 45^\circ \) - \( \angle B = 60^\circ \) - \( \angle C = 75^\circ \) 2. **Use the Sine Rule**: - According to the sine rule, the ratio of the sides opposite to the angles is given by: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] - Here, \( a \) is the side opposite angle A, \( b \) is the side opposite angle B, and \( c \) is the side opposite angle C. 3. **Calculate the Sine Values**: - Calculate \( \sin A \), \( \sin B \), and \( \sin C \): - \( \sin 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 60^\circ = \frac{\sqrt{3}}{2} \) - \( \sin 75^\circ = \sin(45^\circ + 30^\circ) \) - Using the sine addition formula: \[ \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ \] - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) and \( \sin 30^\circ = \frac{1}{2} \) - Thus, \[ \sin 75^\circ = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] 4. **Set Up the Ratios**: - Now we can express the ratios of the sides: \[ \frac{a}{\sin 45^\circ} = \frac{b}{\sin 60^\circ} = \frac{c}{\sin 75^\circ} \] - Substituting the sine values: \[ \frac{a}{\frac{1}{\sqrt{2}}} = \frac{b}{\frac{\sqrt{3}}{2}} = \frac{c}{\frac{\sqrt{3} + 1}{2\sqrt{2}}} \] 5. **Express the Ratios**: - Let \( k \) be a constant such that: \[ a = k \cdot \frac{1}{\sqrt{2}}, \quad b = k \cdot \frac{\sqrt{3}}{2}, \quad c = k \cdot \frac{\sqrt{3} + 1}{2\sqrt{2}} \] 6. **Final Ratio**: - The ratio of the sides \( a : b : c \) can be expressed as: \[ a : b : c = \frac{1}{\sqrt{2}} : \frac{\sqrt{3}}{2} : \frac{\sqrt{3} + 1}{2\sqrt{2}} \] - To simplify, multiply each term by \( 2\sqrt{2} \): \[ a : b : c = 2 : \sqrt{6} : (\sqrt{3} + 1) \] ### Conclusion: Thus, the ratio of the sides of triangle ABC is: \[ \boxed{2 : \sqrt{6} : (\sqrt{3} + 1)} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION B |11 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION C |10 Videos
  • SAMPLE QUESTION PAPER 3

    ICSE|Exercise SECTION C|5 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC, angleA=60^(0), angleB=45^(@) , find a:b .

Solve DeltaABC if m angleA=45^(@),mangleB=57^(@),a=4 .

In DeltaABC, angleA=x+15^(@),angleB=x and angleC=2x-35^(@) find, each angle of the triangle.

Find the area of DeltaABC , if a=10cm, angleB=45^(@) and angleC=45^(@)

Find the area of DeltaABC , if a=10cm, angleB=45^(@) and angleC=45^(@)

If in a Delta A B C ,\ /_A=45^0,\ /_B=60^0,\ a n d\ /_C=75^0 , find the ratio of its sides.

In a DeltaABC , if A=45^(@) and B=75^(@) , then a+sqrt(2)c=

In DeltaABC, angleA-angleB=16^(@) and angleC-angleA=34^(@)=34^(@) , find all angles of the triangle

In DeltaABC , a=12 m, angleB=30^(@) and angleC=90^(@) , then area of DeltaABC=?

DeltaABC , angleA+angleB=65^(@) , angleB+angleC=140^(@) ,then angleB is equal to