Home
Class 11
MATHS
Prove the following using principle of m...

Prove the following using principle of mathematical induction. `3^(2n+2)-8n-9` is divisible by 8.

Text Solution

Verified by Experts

The correct Answer is:
`P(k+1)`
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION B |11 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION C |10 Videos
  • SAMPLE QUESTION PAPER 3

    ICSE|Exercise SECTION C|5 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: \ 3^(2n+2)-8n-9 is divisible 8 for all n in Ndot

Prove the following by the principle of mathematical induction: 3^(2n)+7 is divisible by 8 for all n in Ndot

Prove the following by the principle of mathematical induction: \ 5^(2n)-1 is divisible by 24 for all n in Ndot

Prove the following by the principle of mathematical induction: \ 5^(2n+2)-24 n-25 is divisible 576 for all n

Prove the following by the principle of mathematical induction: \ x^(2n-1)+y^(2n-1) is divisible by x+y for all n in NNdot

Prove the following by the principle of mathematical induction: \ 2. 7^n+3. 5^n-5 is divisible 24 for all n in Ndot

Prove the following by the principle of mathematical induction: \ 11^(n+2)+12^(2n+1) is divisible 133 for all n in Ndot

Prove the following by the principle of mathematical induction: n^3-7n+3 is divisible 3 for all n in N .

Prove the following by the principle of mathematical induction: n^3-7n+3 is divisible 3 for all n in Ndot

Prove the following by using the principle of mathematical induction for all n in N : 3^(2n+2)-8n-9 is divisible by 8.