Home
Class 11
MATHS
If f(x)=(|x-2||x-1|)/(|x-3|), then value...

If `f(x)=(|x-2||x-1|)/(|x-3|)`, then value of `f(-2)` is

A

`(12)/(5)`

B

`(-12)/(5)`

C

12

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(-2) \) for the function \( f(x) = \frac{|x-2||x-1|}{|x-3|} \), we will substitute \( -2 \) into the function and simplify step by step. ### Step 1: Substitute \( -2 \) into the function We start with the function: \[ f(x) = \frac{|x-2||x-1|}{|x-3|} \] Now, we substitute \( x = -2 \): \[ f(-2) = \frac{|-2-2||-2-1|}{|-2-3|} \] ### Step 2: Simplify the expressions inside the absolute values Now, we calculate each term inside the absolute values: - For \( |-2-2| \): \[ |-2-2| = |-4| = 4 \] - For \( |-2-1| \): \[ |-2-1| = |-3| = 3 \] - For \( |-2-3| \): \[ |-2-3| = |-5| = 5 \] ### Step 3: Substitute the simplified values back into the function Now we can substitute these values back into the function: \[ f(-2) = \frac{4 \cdot 3}{5} \] ### Step 4: Calculate the final value Now we perform the multiplication and division: \[ f(-2) = \frac{12}{5} \] Thus, the value of \( f(-2) \) is: \[ \boxed{\frac{12}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION B|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION C |10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|+|x-3| ,then value of f'(2) is equal to

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x) = (x^(2))/(1 + x^(2)) , then the value of f{f(2)} is :

f(x)=x^2+1/(x^2)-6x-6/x+2 then min value of f(x)

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :