Home
Class 11
MATHS
If sintheta=(4)/(5), then the value of s...

If `sintheta=(4)/(5)`, then the value of `sectheta.tantheta` is

A

`-9//20`

B

`9//20`

C

`-20//9`

D

`20//9`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sec \theta \cdot \tan \theta \) given that \( \sin \theta = \frac{4}{5} \), we can follow these steps: ### Step 1: Understand the relationship between sine, cosine, and tangent. We know that: \[ \sin \theta = \frac{\text{perpendicular}}{\text{hypotenuse}} \] From the given \( \sin \theta = \frac{4}{5} \), we can identify: - Perpendicular (opposite side) = 4 - Hypotenuse = 5 ### Step 2: Use the Pythagorean theorem to find the base (adjacent side). Using the Pythagorean theorem: \[ \text{hypotenuse}^2 = \text{perpendicular}^2 + \text{base}^2 \] Substituting the known values: \[ 5^2 = 4^2 + \text{base}^2 \] \[ 25 = 16 + \text{base}^2 \] \[ \text{base}^2 = 25 - 16 = 9 \] \[ \text{base} = 3 \] ### Step 3: Calculate \( \cos \theta \). Using the definition of cosine: \[ \cos \theta = \frac{\text{base}}{\text{hypotenuse}} = \frac{3}{5} \] ### Step 4: Calculate \( \sec \theta \). The secant function is the reciprocal of cosine: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] ### Step 5: Calculate \( \tan \theta \). Using the definition of tangent: \[ \tan \theta = \frac{\text{perpendicular}}{\text{base}} = \frac{4}{3} \] ### Step 6: Find \( \sec \theta \cdot \tan \theta \). Now we can find the product: \[ \sec \theta \cdot \tan \theta = \left(\frac{5}{3}\right) \cdot \left(\frac{4}{3}\right) = \frac{20}{9} \] ### Final Answer: Thus, the value of \( \sec \theta \cdot \tan \theta \) is: \[ \frac{20}{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION B|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION C |10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

If tantheta=(3)/(4) ,then find the value of sectheta+tantheta .

If sectheta+tantheta=x , write the value of sectheta-tantheta in terms of x .

If sectheta+tantheta=p , obtain the values of sectheta,tantheta and sintheta in terms of p .

If sectheta+tantheta=p , obtain the values of sectheta,tantheta and sintheta in terms of p .

If tantheta=(4)/(3) , then find the value of (3sintheta-2costheta)/(3sintheta+5costheta)

If tantheta=(a)/(b) ,then find the value of (costheta+sintheta)/(costheta-sintheta) .

if tantheta=(4)/(3) , then the value of (3sintheta+2costheta)/(3sintheta-2costheta) is

If cottheta=(12)/(5) ,then find the value of sintheta*sectheta+costheta*"cosec"theta .

If tantheta=sqrt(3) ,then find the value of sintheta .

If tantheta=(2)/(3) , then sintheta =