Home
Class 11
MATHS
lim(xrarr2)(sqrt(x+2)-sqrt(x-2))/(x+2) i...

`lim_(xrarr2)(sqrt(x+2)-sqrt(x-2))/(x+2)` is equal to

A

2

B

1

C

`1//2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{x-2}}{x+2} \), we will follow these steps: ### Step 1: Substitute the limit value We start by substituting \( x = 2 \) directly into the limit expression: \[ \frac{\sqrt{2+2} - \sqrt{2-2}}{2+2} = \frac{\sqrt{4} - \sqrt{0}}{4} \] ### Step 2: Simplify the expression Now, we simplify the expression: \[ \frac{2 - 0}{4} = \frac{2}{4} \] ### Step 3: Final calculation Now, we can simplify \( \frac{2}{4} \): \[ \frac{2}{4} = \frac{1}{2} \] ### Conclusion Thus, the limit is: \[ \lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{x-2}}{x+2} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION B|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION C |10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

lim_(xrarr5)(sqrt(x+5)-sqrt(x-5))/(x+5) is equal to

lim_(x rarr2)(5)/(sqrt(2)-sqrt(x))

lim_(xrarr1)(sqrt(1+x)-sqrt(1-x))/(1+x) is equal to

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

The value of lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

lim_(xrarr2) (x^(2)-4)/(sqrt(x+2)-sqrt(3x-2))