Home
Class 11
MATHS
Prove that (1-omega+omega^(2))(1-omega^(...

Prove that `(1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))....` to `2^(n)` factors = `2^(2n)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ (1 - \omega + \omega^2)(1 - \omega^2 + \omega^4)(1 - \omega^4 + \omega^8)(1 - \omega^8 + \omega^{16}) \ldots \text{ (up to } 2^n \text{ factors)} = 2^{2n}, \] we start by analyzing each term in the product. ### Step 1: Simplifying the first term The first term is \[ 1 - \omega + \omega^2. \] We can rewrite this by adding and subtracting \(2\omega\): \[ 1 - \omega + \omega^2 = (1 + \omega^2) + (2\omega - \omega) = 1 + \omega^2 - 2\omega. \] Using the fact that \(1 + \omega + \omega^2 = 0\) (since \(\omega\) is a cube root of unity), we have: \[ 1 + \omega^2 = -\omega. \] Thus, \[ 1 - \omega + \omega^2 = -2\omega. \] ### Step 2: Simplifying the second term The second term is \[ 1 - \omega^2 + \omega^4. \] Again, we can rewrite this by adding and subtracting \(2\omega^2\): \[ 1 - \omega^2 + \omega^4 = (1 + \omega^4) + (2\omega^2 - \omega^2) = 1 + \omega^4 - 2\omega^2. \] Since \(\omega^4 = \omega\) (because \(\omega^3 = 1\)), we have: \[ 1 + \omega^4 = 1 + \omega = -\omega^2. \] Thus, \[ 1 - \omega^2 + \omega^4 = -2\omega^2. \] ### Step 3: Continuing the pattern Continuing this process for the next terms, we find: - For \(1 - \omega^4 + \omega^8\), we can show that it simplifies to \(-2\omega\). - For \(1 - \omega^8 + \omega^{16}\), it simplifies to \(-2\omega^2\). This pattern continues, alternating between \(-2\omega\) and \(-2\omega^2\). ### Step 4: Generalizing the product Now, we can express the product of the first \(2^n\) terms: \[ (-2\omega)(-2\omega^2)(-2\omega)(-2\omega^2) \ldots \] This product has \(2^n\) terms, with \(n\) pairs of \((-2\omega)\) and \((-2\omega^2)\). ### Step 5: Counting the factors The number of \(-2\omega\) terms is \(2^{n-1}\) and the number of \(-2\omega^2\) terms is also \(2^{n-1}\). Thus, we can write: \[ (-2)^{2^n} \cdot \omega^{2^{n-1}} \cdot \omega^{2^{n-1}} = (-2)^{2^n} \cdot \omega^{2^n}. \] ### Step 6: Evaluating the product Since \(\omega^3 = 1\), \(\omega^{2^n} = \omega^{(2^n \mod 3)}\). For \(n \geq 1\), \(2^n \mod 3\) will cycle through \(1\) and \(2\) based on the parity of \(n\). However, the magnitude of the product is what matters here. The magnitude of \((-2)^{2^n}\) is \(2^{2^n}\). ### Final Result Thus, we conclude that: \[ (1 - \omega + \omega^2)(1 - \omega^2 + \omega^4)(1 - \omega^4 + \omega^8)(1 - \omega^8 + \omega^{16}) \ldots = 2^{2n}. \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION B|10 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION C|10 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION C |10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

Prove the following (1- omega + omega^(2)) (1- omega^(2) + omega^(4)) (1- omega^(4) + omega^(8)) …. to 2n factors = 2^(2n) where , ω is the cube root of unity.

Prove the following (1- omega + omega^(2)) (1 + omega- omega^(2)) (1 - omega- omega^(2))= 8

Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

Prove the following (1+ omega) (1+ omega^(2)) (1 + omega^(4)) (1 + omega^(8)) ….to 2n factors = 1

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If 1, omega and omega^(2) are the cube roots of unity evaluate (1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)) .

If omega is a non-real complex cube root of unity, find the values of the following. (i) omega^(1999) (ii) omega^(998) (iii) ((-1+isqrt(3))/2)^(3n+2),ninNand i=sqrt(-1) (iv) (1+omega)(1+omega )^(2)(1+omega)^(4)(1+omega)^(8) ...upto 2n factors (v) ((alpha+betaomega+gammaomega^(2)+deltaomega^(2))/(beta+alphaomega^(2)+gammaomega+deltaomega))," where "alpha,beta,gamma,delta, in R (vi) 1*(2-omega)(2-omega^(2))+2*(3-omega)(3-omega^(2))+3*(4-omega)(4-omega^(2))+...+...+(n-1)*(n-omega)(n-omega^(2))