Home
Class 12
MATHS
If A= [(alpha,beta),(gamma,-alpha)] is s...

If `A= [(alpha,beta),(gamma,-alpha)]` is such that `A^(2)=1`, then

A

`1 + alpha^(2) + beta gamma= 0`

B

`1- alpha^(2) + beta gamma= 0`

C

`1- alpha^(2) - beta gamma= 0`

D

`1 + alpha^(2) - beta gamma= 0`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section-B|10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section -C|9 Videos
  • SELF ASSESSMENT PAPER 06

    ICSE|Exercise Section .C. |11 Videos
  • SELF ASSESSMENT PAPER 10

    ICSE|Exercise SECTION B|3 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(alpha,beta),(gamma,alpha):}] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

If A=[[alpha,beta],[gamma,alpha]] is such that A^2=I , then (A) 1+alpha^2+betagamma=0 (B) 1-alpha^2+betagamma=0 (C) 1-alpha^2-betagamma=0 (D) 1+alpha^2-betagamma=0

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed unit matrix, then alpha,beta and gamma should satisfy the relation. a. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If alpha,beta and gamma are such that alpha+beta+gamma=0 , then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If alpha,beta,gamma are the roots of he euation x^3+4x+1=0, then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) .

If alpha,beta,gamma are the roots of the equation x^3-p x+q=0, then find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma) .

If alpha , beta , gamma in {1,omega,omega^(2)} (where omega and omega^(2) are imaginery cube roots of unity), then number of triplets (alpha,beta,gamma) such that |(a alpha+b beta+c gamma)/(a beta+b gamma+c alpha)|=1 is