Home
Class 12
MATHS
Value of "lim"(x rarr 1) (1-x) "tan " (p...

Value of `"lim"_(x rarr 1) (1-x) "tan " (pi x)/(2)` is

A

`(2)/(pi)`

B

`(pi)/(2)`

C

`-(2)/(pi)`

D

`-(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section-B|10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section -C|9 Videos
  • SELF ASSESSMENT PAPER 06

    ICSE|Exercise Section .C. |11 Videos
  • SELF ASSESSMENT PAPER 10

    ICSE|Exercise SECTION B|3 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr a) (2- a/x)^(tan ((pi x)/(2a))) is:

The value of lim_(x rarr 1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

Evaluate : "lim"_(x rarr pi//4) (1- tanx)/(cos 2x)

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

lim_(x rarr0)(1+2x)^(5/x)

lim_(x rarr0)(1/x)^(1-cos x)

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

lim_(x rarr0)(x-sin x)/(tan^(2)x) .