Home
Class 12
MATHS
For the matrix A=|[3, 1], [7, 5]| , find...

For the matrix `A=|[3, 1], [7, 5]|` , find `x` and `y` so that `A^2+x I=y Adot`

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section-B|10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section -C|9 Videos
  • SELF ASSESSMENT PAPER 06

    ICSE|Exercise Section .C. |11 Videos
  • SELF ASSESSMENT PAPER 10

    ICSE|Exercise SECTION B|3 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[[3 ,1],[ 7, 5]], find x and y sot that A^2+x I+y Adot=0 Hence, Find A^(-1)dot

For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

If 2[3 4 5x]+[1y0 1]=[7 0 10 5] , find x and y .

If A=[1 3 2 1] , find the determinant of the matrix A^2-2Adot

If (2x + 3,y-1) =(3,5) , then find x and y.

Using elementary transformations, find the inverse of the matrix A = [[ 8, 4, 3 ], [ 2, 1, 1 ], [ 1, 2, 2 ]] and use it to solve the following system of linear equations : 8x+4y+3z=19 2x+y+z=5 x+2y+2z=7

If the matrix A=[[5 ,2,x], [y, z,-3], [4,t,-7]] is a symmetric matrix, find x ,\ y ,\ z and t .

If (2x+y,7)=(5,y-3) then find x and y

Find the values of x, y, z if the matrix A=[[0, 2y, z],[ x, y,-z],[ x,-y, z]] satisfy the equation A^(prime)A=I .

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.