Home
Class 12
MATHS
Evaluate: int e^(x) (1 + sin x)/(1 + cos...

Evaluate: `int e^(x) (1 + sin x)/(1 + cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int e^{x} \frac{1 + \sin x}{1 + \cos x} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int e^{x} \frac{1 + \sin x}{1 + \cos x} \, dx \] We can separate the fraction: \[ I = \int e^{x} \left( \frac{1}{1 + \cos x} + \frac{\sin x}{1 + \cos x} \right) \, dx \] ### Step 2: Simplify the Terms Now, we can rewrite the second term. We know that: \[ \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} \] and \[ 1 + \cos x = 2 \cos^2 \frac{x}{2} \] Thus, we can express the integral as: \[ I = \int e^{x} \left( \frac{1}{1 + \cos x} + \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{1 + \cos x} \right) \, dx \] This simplifies to: \[ I = \int e^{x} \left( \frac{1}{2 \cos^2 \frac{x}{2}} + \tan \frac{x}{2} \right) \, dx \] ### Step 3: Split the Integral Now, we can split the integral into two parts: \[ I = \int e^{x} \frac{1}{2 \cos^2 \frac{x}{2}} \, dx + \int e^{x} \tan \frac{x}{2} \, dx \] ### Step 4: Solve the First Integral The first integral can be rewritten as: \[ \int e^{x} \sec^2 \frac{x}{2} \, dx \] Using integration by parts, let: - \( u = \sec^2 \frac{x}{2} \) - \( dv = e^{x} \, dx \) Then: - \( du = \sec^2 \frac{x}{2} \tan \frac{x}{2} \cdot \frac{1}{2} \, dx \) - \( v = e^{x} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int e^{x} \sec^2 \frac{x}{2} \, dx = e^{x} \sec^2 \frac{x}{2} - \int e^{x} \cdot \frac{1}{2} \sec^2 \frac{x}{2} \tan \frac{x}{2} \, dx \] ### Step 5: Solve the Second Integral The second integral \( \int e^{x} \tan \frac{x}{2} \, dx \) can also be solved using integration by parts, where: - \( u = \tan \frac{x}{2} \) - \( dv = e^{x} \, dx \) Following the same process as before, we will find the solution for this integral. ### Final Step: Combine Results After solving both integrals, we combine the results to get: \[ I = e^{x} \tan \frac{x}{2} + C \] ### Final Answer Thus, the evaluated integral is: \[ \int e^{x} \frac{1 + \sin x}{1 + \cos x} \, dx = e^{x} \tan \frac{x}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section-B|10 Videos
  • SELF ASSESSMENT PAPER 1

    ICSE|Exercise Section -C|9 Videos
  • SELF ASSESSMENT PAPER 06

    ICSE|Exercise Section .C. |11 Videos
  • SELF ASSESSMENT PAPER 10

    ICSE|Exercise SECTION B|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate int e^(2x) ((1+ sin 2x)/(1+cos 2x))dx

Evaluate : inte^x((1 + sin x)/(1+ cos x))dx

Evaluate: inte^(2x)\ ((1+sin2x)/(1+cos2x))\ dx

Evaluate : int (sqrt(1 + sin x))/( 1 + cos x) e^(-(x)/(2))dx

Evaluate: int e^(x)((sin2x-2)/(1-cos2x))dx=

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate int e^(x) ((1+sinx cos x)/(cos^(2)x))dx

Evaluate : int (sin x)/((1+cos x)(2+3 cos x)) dx

Evaluate: int(x+1+e^x)\ dx