Home
Class 12
MATHS
The domain of sin^(-1) 2x is...

The domain of `sin^(-1) 2x` is

A

[0,1]

B

`[-1,1]`

C

`[-1//2,1//2]`

D

`[-2, 2]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( \sin^{-1}(2x) \), we need to ensure that the argument of the sine inverse function, which is \( 2x \), lies within the range of the sine inverse function. The sine inverse function, \( \sin^{-1}(y) \), is defined for \( y \) values in the interval \([-1, 1]\). ### Step-by-Step Solution: 1. **Identify the condition for the sine inverse function:** \[ -1 \leq 2x \leq 1 \] This means that the value of \( 2x \) must be between -1 and 1. 2. **Split the inequality into two parts:** - From the left side: \[ 2x \geq -1 \] - From the right side: \[ 2x \leq 1 \] 3. **Solve the left inequality:** \[ 2x \geq -1 \implies x \geq -\frac{1}{2} \] 4. **Solve the right inequality:** \[ 2x \leq 1 \implies x \leq \frac{1}{2} \] 5. **Combine the results:** From the two inequalities, we have: \[ -\frac{1}{2} \leq x \leq \frac{1}{2} \] 6. **Write the domain in interval notation:** The domain of \( \sin^{-1}(2x) \) is: \[ \boxed{[-\frac{1}{2}, \frac{1}{2}]} \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section-B|10 Videos
  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section -C|10 Videos
  • SELF ASSEMENT PAPER 8

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .C.|12 Videos

Similar Questions

Explore conceptually related problems

The domain of sin^(-1)x is

Find the domain of sin^(-1)(2x^(2)+1)

Find domain of sin^(-1) ( 2 x^(2) - 1)

Find the domain of: y=sin^(-1)((x^(2))/(1+x^(2)))

Find the domain of f(x)=sin^(-1)((x^2)/2)dot

Find the domain of f(x)=sin^(-1)(-x^2)dot

The domain of 2 sin x cos x is

The domain of f(x)=sin^(-1){log_3(x/3)}

Find the domain of f(x)=sin^(-1)x+cosxdot

Find the domain of f(x)=sin^(-1)x+cosxdot