Home
Class 12
MATHS
If tan^(-1)x+tan^(-1)y=pi/4 , then write...

If `tan^(-1)x+tan^(-1)y=pi/4` , then write the value of `x+y+x ydot`

A

1

B

`sqrt3`

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section-B|10 Videos
  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section -C|10 Videos
  • SELF ASSEMENT PAPER 8

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .C.|12 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4, then find the value of xdot

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4 , then find the value of x .

If tan^-1 y=4 tan^-1x, then y is infinite if

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x=y=z and xyz ≥ 3 sqrt(3) , then