Home
Class 12
MATHS
Evaluate: int (x^(2))/(x^(2)-4) dx...

Evaluate: `int (x^(2))/(x^(2)-4) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{x^2}{x^2 - 4} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand by adding and subtracting 4 in the numerator: \[ I = \int \frac{x^2 - 4 + 4}{x^2 - 4} \, dx \] This can be separated into two parts: \[ I = \int \frac{x^2 - 4}{x^2 - 4} \, dx + \int \frac{4}{x^2 - 4} \, dx \] ### Step 2: Simplify the first integral The first part simplifies to: \[ \int \frac{x^2 - 4}{x^2 - 4} \, dx = \int 1 \, dx = x \] ### Step 3: Simplify the second integral Now, we need to evaluate the second integral: \[ \int \frac{4}{x^2 - 4} \, dx \] We can factor the denominator: \[ x^2 - 4 = (x - 2)(x + 2) \] Thus, we can rewrite the integral as: \[ 4 \int \frac{1}{(x - 2)(x + 2)} \, dx \] ### Step 4: Use partial fraction decomposition We can express \( \frac{1}{(x - 2)(x + 2)} \) using partial fractions: \[ \frac{1}{(x - 2)(x + 2)} = \frac{A}{x - 2} + \frac{B}{x + 2} \] Multiplying through by the denominator \( (x - 2)(x + 2) \) gives: \[ 1 = A(x + 2) + B(x - 2) \] Setting \( x = 2 \): \[ 1 = A(4) \implies A = \frac{1}{4} \] Setting \( x = -2 \): \[ 1 = B(-4) \implies B = -\frac{1}{4} \] Thus, we have: \[ \frac{1}{(x - 2)(x + 2)} = \frac{1/4}{x - 2} - \frac{1/4}{x + 2} \] ### Step 5: Integrate the partial fractions Now we can integrate: \[ 4 \int \left( \frac{1/4}{x - 2} - \frac{1/4}{x + 2} \right) \, dx = \int \left( \frac{1}{x - 2} - \frac{1}{x + 2} \right) \, dx \] This gives: \[ \int \frac{1}{x - 2} \, dx - \int \frac{1}{x + 2} \, dx = \ln |x - 2| - \ln |x + 2| = \ln \left| \frac{x - 2}{x + 2} \right| \] ### Step 6: Combine results Combining all parts, we have: \[ I = x + 4 \left( \ln \left| \frac{x - 2}{x + 2} \right| \right) + C \] ### Final Result Thus, the final result of the integral is: \[ I = x + 4 \ln \left| \frac{x - 2}{x + 2} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section-B|10 Videos
  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section -C|10 Videos
  • SELF ASSEMENT PAPER 8

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .C.|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(1/2))/(1+x^(3/4))dx

Evaluate: int(x^2-1)/(x^2+4)dx

Evaluate: int(x^2(x^4+4))/(x^2+4)dx

Evaluate: int(x^2)/(x^4-x^2-12)\ dx

Evaluate: int(x^2)/(x^4+x^2-2)\ dx

Evaluate: int(x^2)/(x^4+x^2-2)\ dx

Evaluate: int(x^2)/(sqrt(4-x^2))\ dx

Evaluate: int1/((x^2+1)(x^2+4))\ dx

Evaluate: int1/((x^2+1)(x^2+4))\ dx

Evaluate : int (1)/(4+x^(2)) " dx "