Home
Class 12
MATHS
Evaluate: int(0)^(1//2) (sin^(-1)x)/((1-...

Evaluate: `int_(0)^(1//2) (sin^(-1)x)/((1-x^(2))^(3//2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{1}{2}} \frac{\sin^{-1} x}{(1 - x^2)^{\frac{3}{2}}} \, dx, \] we will use a substitution method. Let's follow the steps: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we have: \[ x = \sin t \quad \text{and} \quad dx = \cos t \, dt. \] ### Step 2: Change the limits When \( x = 0 \), \( t = \sin^{-1}(0) = 0 \). When \( x = \frac{1}{2} \), \( t = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \). Thus, the limits change from \( 0 \) to \( \frac{\pi}{6} \). ### Step 3: Rewrite the integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{6}} \frac{t}{(1 - \sin^2 t)^{\frac{3}{2}}} \cos t \, dt. \] Using the identity \( 1 - \sin^2 t = \cos^2 t \), we have: \[ (1 - \sin^2 t)^{\frac{3}{2}} = (\cos^2 t)^{\frac{3}{2}} = \cos^3 t. \] Therefore, the integral simplifies to: \[ I = \int_{0}^{\frac{\pi}{6}} \frac{t \cos t}{\cos^3 t} \, dt = \int_{0}^{\frac{\pi}{6}} \frac{t}{\cos^2 t} \, dt. \] ### Step 4: Rewrite the integral We can rewrite \( \frac{1}{\cos^2 t} \) as \( \sec^2 t \): \[ I = \int_{0}^{\frac{\pi}{6}} t \sec^2 t \, dt. \] ### Step 5: Integration by parts Let \( u = t \) and \( dv = \sec^2 t \, dt \). Then, we have: \[ du = dt \quad \text{and} \quad v = \tan t. \] Using integration by parts: \[ I = \left[ t \tan t \right]_{0}^{\frac{\pi}{6}} - \int_{0}^{\frac{\pi}{6}} \tan t \, dt. \] ### Step 6: Evaluate the first term Evaluating the first term: \[ \left[ t \tan t \right]_{0}^{\frac{\pi}{6}} = \left( \frac{\pi}{6} \tan\left(\frac{\pi}{6}\right) \right) - (0 \cdot \tan(0)) = \frac{\pi}{6} \cdot \frac{1}{\sqrt{3}} = \frac{\pi}{6\sqrt{3}}. \] ### Step 7: Evaluate the integral Now we need to evaluate \( \int_{0}^{\frac{\pi}{6}} \tan t \, dt \): \[ \int \tan t \, dt = -\log|\cos t| + C. \] Thus, \[ \int_{0}^{\frac{\pi}{6}} \tan t \, dt = \left[-\log|\cos t|\right]_{0}^{\frac{\pi}{6}} = -\log\left(\cos\left(\frac{\pi}{6}\right)\right) + \log\left(\cos(0)\right). \] Calculating this gives: \[ -\log\left(\frac{\sqrt{3}}{2}\right) + \log(1) = -\log\left(\frac{\sqrt{3}}{2}\right) = \log\left(\frac{2}{\sqrt{3}}\right). \] ### Step 8: Combine results Putting it all together: \[ I = \frac{\pi}{6\sqrt{3}} - \log\left(\frac{2}{\sqrt{3}}\right). \] ### Final Answer Thus, the final result is: \[ I = \frac{\pi}{6\sqrt{3}} - \log\left(\frac{2}{\sqrt{3}}\right). \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section-B|10 Videos
  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section -C|10 Videos
  • SELF ASSEMENT PAPER 8

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .C.|12 Videos

Similar Questions

Explore conceptually related problems

int(sin^(- 1)x)/((1-x^2)^(3/2))dx

int(sin^(- 1)x)/((1-x^2)^(1/2)) dx

Evaluate : int(x^(2) sin^(-1)x)/((1-x^(2))^((3)/(2)))dx

int_(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2)))dx=?

Find : int_0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)^(3/2))dx

Evaluate: int_0^(1)sin^(-1)((2x)/(1+x^2))dx

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

Evaluate: int_0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx