Home
Class 12
MATHS
Evaluate : int (x)/(x+1)^(2)(dx)...

Evaluate : `int (x)/(x+1)^(2)(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{x}{(x+1)^2} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral:** \[ \int \frac{x}{(x+1)^2} \, dx \] We can manipulate the numerator by adding and subtracting 1: \[ \int \frac{x + 1 - 1}{(x+1)^2} \, dx = \int \frac{(x + 1) - 1}{(x+1)^2} \, dx \] 2. **Separate the Integral:** \[ \int \frac{x + 1}{(x+1)^2} \, dx - \int \frac{1}{(x+1)^2} \, dx \] This simplifies to: \[ \int \frac{1}{x+1} \, dx - \int \frac{1}{(x+1)^2} \, dx \] 3. **Evaluate the First Integral:** The integral \( \int \frac{1}{x+1} \, dx \) is: \[ \ln |x + 1| \] 4. **Evaluate the Second Integral:** The integral \( \int \frac{1}{(x+1)^2} \, dx \) can be computed using the power rule: \[ -\frac{1}{x + 1} \] 5. **Combine the Results:** Now, substituting back, we have: \[ \ln |x + 1| + \frac{1}{x + 1} + C \] where \( C \) is the constant of integration. ### Final Answer: \[ \int \frac{x}{(x+1)^2} \, dx = \ln |x + 1| + \frac{1}{x + 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSEMENT PAPER 8

    ICSE|Exercise SECTION B|10 Videos
  • SELF ASSEMENT PAPER 8

    ICSE|Exercise SECTION C|10 Videos
  • SAMPLE QUESTON PAPER-2

    ICSE|Exercise SECTON-C|11 Videos
  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(x)/((x-1)^(2)(x+2))dx .

Evaluate: int(x+2)/((x+1)^2)dx .

Evaluate: int(x+2)/((x+1)^2)\ dx

Evaluate: int(x^3)/((x+1)^2)\ dx

Evaluate: int(2x-1)/((x-1)^2)dx

Evaluate: int(e^x x)/((x+1)^2)dx

Evaluate : int (x)/((x-2)(x-1)^(2))dx

Evaluate int (3x-1)/((x-2)^(2))dx

Evaluate: inte^x x/((x+1)^2)\ dx

Evaluate: int(x^3)/((x^2+1)^3)dx