Home
Class 12
MATHS
Using properties of definite integrals,...

Using properties of definite integrals, evaluate:
`int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx`

Text Solution

Verified by Experts

The correct Answer is:
`int(e^(3x)+x^(2))dx`
Promotional Banner

Topper's Solved these Questions

  • SELF ASSEMENT PAPER 8

    ICSE|Exercise SECTION B|10 Videos
  • SELF ASSEMENT PAPER 8

    ICSE|Exercise SECTION C|10 Videos
  • SAMPLE QUESTON PAPER-2

    ICSE|Exercise SECTON-C|11 Videos
  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

Evaluate : int_(0)^(pi/2)(sin^2x-cos^2x)/(sin^3x+cos^3x)dx

Evaluate : int_(0)^(pi//2) (cos x)/(1+sin^(2) x)dx

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) cos^2x dx