Home
Class 12
PHYSICS
Two charged particles traverse identical...

Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field `vec(B)=B_(0)vec(k)`.

A

They have equal component of momenta

B

They must have equal charges

C

They necessarily represent a particle-antiparticle pair.

D

The charge to mass ratio is `(e/m)_(1) +(e/m)_2=0`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field vec(B)=B_(0)hat(K)

Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field vec(B)=B_(0)hat(K)

Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field vec(B)=B_(0)hat(K)

The magnetic flux linked with a vector area vec(A) in a uniform magnetic field vec(B) is

The path of a charged particle moving in a uniform steady magnetic field cannot be a

As a charged particle 'q' moving with a velocity vec(v) enters a uniform magnetic field vec(B) , it experience a force vec(F) = q(vec(v) xx vec(B)). For theta = 0^(@) or 180^(@), theta being the angle between vec(v) and vec(B) , force experienced is zero and the particle passes undeflected. For theta = 90^(@) , the particle moves along a circular arc and the magnetic force (qvB) provides the necessary centripetal force (mv^(2)//r) . For other values of theta (theta !=0^(@), 180^(@), 90^(@)) , the charged particle moves along a helical path which is the resultant motion of simultaneous circular and translational motions. Suppose a particle that carries a charge of magnitude q and has a mass 4 xx 10^(-15) kg is moving in a region containing a uniform magnetic field vec(B) = -0.4 hat(k) T . At some instant, velocity of the particle is vec(v) = (8 hat(i) - 6 hat(j) 4 hat(k)) xx 10^(6) m s^(-1) and force acting on it has a magnitude 1.6 N Motion of charged particle will be along a helical path with

As a charged particle 'q' moving with a velocity vec(v) enters a uniform magnetic field vec(B) , it experience a force vec(F) = q(vec(v) xx vec(B)). For theta = 0^(@) or 180^(@), theta being the angle between vec(v) and vec(B) , force experienced is zero and the particle passes undeflected. For theta = 90^(@) , the particle moves along a circular arc and the magnetic force (qvB) provides the necessary centripetal force (mv^(2)//r) . For other values of theta (theta !=0^(@), 180^(@), 90^(@)) , the charged particle moves along a helical path which is the resultant motion of simultaneous circular and translational motions. Suppose a particle that carries a charge of magnitude q and has a mass 4 xx 10^(-15) kg is moving in a region containing a uniform magnetic field vec(B) = -0.4 hat(k) T . At some instant, velocity of the particle is vec(v) = (8 hat(i) - 6 hat(j) 4 hat(k)) xx 10^(6) m s^(-1) and force acting on it has a magnitude 1.6 N If the coordinates of the particle at t = 0 are (2 m, 1 m, 0), coordinates at a time t = 3 T, where T is the time period of circular component of motion. will be (take pi = 3.14 )

A positively charged particle is moving along the positive x-axis in a unifom electric field vec E= E_0hatj and magnetic field vec B = B_0hat k (where E_0 and B_0 are positive constants), then

As a charged particle 'q' moving with a velocity vec(v) enters a uniform magnetic field vec(B) , it experience a force vec(F) = q(vec(v) xx vec(B)). For theta = 0^(@) or 180^(@), theta being the angle between vec(v) and vec(B) , force experienced is zero and the particle passes undeflected. For theta = 90^(@) , the particle moves along a circular arc and the magnetic force (qvB) provides the necessary centripetal force (mv^(2)//r) . For other values of theta (theta !=0^(@), 180^(@), 90^(@)) , the charged particle moves along a helical path which is the resultant motion of simultaneous circular and translational motions. Suppose a particle that carries a charge of magnitude q and has a mass 4 xx 10^(-15) kg is moving in a region containing a uniform magnetic field vec(B) = -0.4 hat(k) T . At some instant, velocity of the particle is vec(v) = (8 hat(i) - 6 hat(j) 4 hat(k)) xx 10^(6) m s^(-1) and force acting on it has a magnitude 1.6 N Angular frequency of rotation of particle, also called the cyclotron frequency' is

The torque and magnetic potential energy of a magnetic dipole in most stable position ina uniform magnetic field vec(B) having magnetic moment vec(m) will be