Home
Class 11
MATHS
If alpha and beta are roots of the equat...

If `alpha and beta` are roots of the equation `2x^(2)-3x-5=0`, then the value of `(1)/(alpha)+(1)/(beta)` is

A

`-(3)/(5)`

B

`(3)/(5)`

C

`(5)/(3)`

D

`-(5)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( 2x^2 - 3x - 5 = 0 \). ### Step-by-Step Solution: **Step 1: Identify coefficients from the quadratic equation.** The given quadratic equation is: \[ 2x^2 - 3x - 5 = 0 \] Here, we can identify: - \( a = 2 \) - \( b = -3 \) - \( c = -5 \) **Step 2: Use Vieta's formulas to find \( \alpha + \beta \) and \( \alpha \beta \).** According to Vieta's formulas: - The sum of the roots \( \alpha + \beta \) is given by: \[ \alpha + \beta = -\frac{b}{a} = -\frac{-3}{2} = \frac{3}{2} \] - The product of the roots \( \alpha \beta \) is given by: \[ \alpha \beta = \frac{c}{a} = \frac{-5}{2} \] **Step 3: Calculate \( \frac{1}{\alpha} + \frac{1}{\beta} \).** We know that: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} \] Substituting the values we found: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{3}{2}}{\frac{-5}{2}} \] **Step 4: Simplify the expression.** When we simplify: \[ \frac{\frac{3}{2}}{\frac{-5}{2}} = \frac{3}{2} \times \frac{2}{-5} = \frac{3 \cdot 2}{2 \cdot -5} = \frac{3}{-5} = -\frac{3}{5} \] ### Final Answer: Thus, the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) is: \[ -\frac{3}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha beta)+(alpha+beta) is

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is

If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the value of (alpha^2/beta)^(1/3)+(beta^2/alpha)^(1/3) is

If alpha and beta be the roots of the equation x^(2)-2x+2=0 , then the least value of n for which ((alpha)/(beta))^(n)=1 is:

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .