Home
Class 7
MATHS
Add: (7)/((-18))and(8)/(27)...

Add: `(7)/((-18))and(8)/(27)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the rational numbers \( \frac{7}{-18} \) and \( \frac{8}{27} \), we can follow these steps: ### Step 1: Rewrite the first fraction The first fraction is \( \frac{7}{-18} \). We can rewrite it as: \[ -\frac{7}{18} \] ### Step 2: Find the Least Common Multiple (LCM) Next, we need to find the LCM of the denominators 18 and 27. - The prime factorization of 18 is \( 2 \times 3^2 \). - The prime factorization of 27 is \( 3^3 \). To find the LCM, we take the highest power of each prime factor: - For 2: \( 2^1 \) - For 3: \( 3^3 \) Thus, the LCM is: \[ LCM = 2^1 \times 3^3 = 2 \times 27 = 54 \] ### Step 3: Convert each fraction to have the LCM as the denominator Now we convert each fraction to have a denominator of 54. For \( -\frac{7}{18} \): \[ -\frac{7}{18} = -\frac{7 \times 3}{18 \times 3} = -\frac{21}{54} \] For \( \frac{8}{27} \): \[ \frac{8}{27} = \frac{8 \times 2}{27 \times 2} = \frac{16}{54} \] ### Step 4: Add the fractions Now we can add the two fractions: \[ -\frac{21}{54} + \frac{16}{54} = \frac{-21 + 16}{54} = \frac{-5}{54} \] ### Final Answer Thus, the final answer is: \[ \frac{-5}{54} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Add: (7)/((-27))and(-11)/(18)

Add: (5)/(12)and(3)/(8)

Add, each pair of rational numbers, given below, and show that their addition (sum) is also a rational number : (viii) (7)/(-18) "and" (8)/(27)

Add (-3)/(8) and (5)/(-12) .

Add: (7)/(24)and((-5))/(16)

Add: (5)/(12) and ((-7))/(18)

Add: 7/(10)a n d2/(15)

Add the rational numbers: (i) (-5)/(16)\ a n d7/(24) (ii) 7/(-18)\ a n d\ 8/(27)

Find: (5)/(18)-((-7)/(18))

Add 9/(-14) and -7/14