Home
Class 7
MATHS
Evaluate: (6)/((-8))xx(3)/((-4))...

Evaluate: `(6)/((-8))xx(3)/((-4))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\frac{6}{-8} \times \frac{3}{-4}\), we will follow these steps: ### Step 1: Rewrite the fractions We can rewrite the fractions with negative signs: \[ \frac{6}{-8} = -\frac{6}{8} \quad \text{and} \quad \frac{3}{-4} = -\frac{3}{4} \] So the expression becomes: \[ -\frac{6}{8} \times -\frac{3}{4} \] ### Step 2: Multiply the fractions When we multiply two negative fractions, the result will be positive: \[ -\frac{6}{8} \times -\frac{3}{4} = \frac{6 \times 3}{8 \times 4} \] ### Step 3: Calculate the numerator and denominator Now we calculate the numerator and denominator: \[ 6 \times 3 = 18 \quad \text{and} \quad 8 \times 4 = 32 \] So we have: \[ \frac{18}{32} \] ### Step 4: Simplify the fraction Next, we simplify \(\frac{18}{32}\) by finding the greatest common divisor (GCD) of 18 and 32. The GCD is 2. \[ \frac{18 \div 2}{32 \div 2} = \frac{9}{16} \] ### Final Answer Thus, the value of \(\frac{6}{-8} \times \frac{3}{-4}\) is: \[ \frac{9}{16} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate : (-3)^(6)xx(-2)^(6)

Evaluate: |-(2)/(3)xx(6)/(9)|-|-(1)/(4)xx(8)/(9)|

Knowledge Check

  • Evaluate: 6 xx 3 (3)/(4)

    A
    `22 (1)/(2)`
    B
    `22 (5)/(2)`
    C
    `21 (1)/(2)`
    D
    `23 (1)/(2)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate (i) (8^-1 xx 5^3)/(2^-4) (ii) (5^-1 xx 2^-1) xx 6^-1

    Evaluate: g. 5 (1)/(3) xx 8 (1)/(4) xx 2 (3)/(5)

    Evaluate: |(1)/(3)-(3)/(5)|+|(2)/(9)xx(3)/(4)|-|(5)/(6)-(2)/(3)|

    Evaluate : [(1)/(4)]^(-2)-3(8)^((2)/(3)) xx 4^(0) + [(9)/(16)]^(-(1)/(2))

    Evaluate : ((4 + 8)/(2-(-6)))(4+8 -: 2 -(-6))

    Evaluate: c. 5 (1)/(4) xx 3 (5)/(6) + 1 (3)/(5) div 5 (1)/(3)

    Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)