Home
Class 11
PHYSICS
Find the projection of the vector vec(P)...

Find the projection of the vector `vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) ` on the vector `vec(Q) = hat(i) + 2hat(j) + 2hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \(\vec{P} = 2\hat{i} - 3\hat{j} + 6\hat{k}\) on the vector \(\vec{Q} = \hat{i} + 2\hat{j} + 2\hat{k}\), we can use the formula for the projection of one vector onto another: \[ \text{Projection of } \vec{P} \text{ on } \vec{Q} = \frac{\vec{P} \cdot \vec{Q}}{|\vec{Q}|^2} \vec{Q} \] ### Step 1: Calculate the dot product \(\vec{P} \cdot \vec{Q}\) The dot product of two vectors \(\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) and \(\vec{B} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}\) is given by: \[ \vec{A} \cdot \vec{B} = a_1b_1 + a_2b_2 + a_3b_3 \] For \(\vec{P} = 2\hat{i} - 3\hat{j} + 6\hat{k}\) and \(\vec{Q} = \hat{i} + 2\hat{j} + 2\hat{k}\): \[ \vec{P} \cdot \vec{Q} = (2)(1) + (-3)(2) + (6)(2) \] \[ = 2 - 6 + 12 = 8 \] ### Step 2: Calculate the magnitude of \(\vec{Q}\) The magnitude of a vector \(\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) is given by: \[ |\vec{A}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \] For \(\vec{Q} = \hat{i} + 2\hat{j} + 2\hat{k}\): \[ |\vec{Q}| = \sqrt{1^2 + 2^2 + 2^2} \] \[ = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ### Step 3: Calculate the projection of \(\vec{P}\) on \(\vec{Q}\) Now we can find the projection using the formula: \[ \text{Projection of } \vec{P} \text{ on } \vec{Q} = \frac{\vec{P} \cdot \vec{Q}}{|\vec{Q}|^2} \vec{Q} \] First, we need \( |\vec{Q}|^2 \): \[ |\vec{Q}|^2 = 3^2 = 9 \] Now substituting the values: \[ \text{Projection of } \vec{P} \text{ on } \vec{Q} = \frac{8}{9} \vec{Q} \] \[ = \frac{8}{9} (\hat{i} + 2\hat{j} + 2\hat{k}) \] ### Final Result Thus, the projection of \(\vec{P}\) on \(\vec{Q}\) is: \[ \frac{8}{9} \hat{i} + \frac{16}{9} \hat{j} + \frac{16}{9} \hat{k} \]

To find the projection of the vector \(\vec{P} = 2\hat{i} - 3\hat{j} + 6\hat{k}\) on the vector \(\vec{Q} = \hat{i} + 2\hat{j} + 2\hat{k}\), we can use the formula for the projection of one vector onto another: \[ \text{Projection of } \vec{P} \text{ on } \vec{Q} = \frac{\vec{P} \cdot \vec{Q}}{|\vec{Q}|^2} \vec{Q} \] ### Step 1: Calculate the dot product \(\vec{P} \cdot \vec{Q}\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along the vector vec(b) = hat(i) + 2 hat(j)+ 2hat(k) is

Find the unit vector of the vector vec(r ) = 4hat(i) - 2hat(j) + 3 hat(k)

Find the projection of the vector vec a=2 hat i+3 hat j+2 hat k on the vector vec b=2 hat i+2 hat j+ hat k .

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

find the projection of the vector vec a=2hat i+3 hat j+2 hat k , on the vector vec b=hati+2hatj+hat k

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Write the value of lamda so that the vectors vec(a)= 2hat(i) + lamda hat(j) + hat(k) and vec(b)= hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other?

ICSE-VECTORS SCALARS ELEMENTARY CALCULUS -FROM SCALAR PRODUCT AND VECTOR PRODUCT
  1. If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) +...

    Text Solution

    |

  2. Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k...

    Text Solution

    |

  3. Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What i...

    Text Solution

    |

  4. If hat(i) and hat(j) are unit vectors x and y axes repsectively , wha...

    Text Solution

    |

  5. The result of scalar product and the vector product of two given vecto...

    Text Solution

    |

  6. The magnitude to two vectors are sqrt(61) and sqrt(78) .If their scal...

    Text Solution

    |

  7. Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j)...

    Text Solution

    |

  8. Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | v...

    Text Solution

    |

  9. Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) ...

    Text Solution

    |

  10. The diagonals of a parallelogram are given by the vectors (3 hat(i) + ...

    Text Solution

    |

  11. Obtain the condition for the two vectors vec(A) = x(1) hat(i) + y(1)ha...

    Text Solution

    |

  12. What are the values of the following vec(A) . vec(A)

    Text Solution

    |

  13. What are the values of the following vec(A) xx vec(A)

    Text Solution

    |

  14. What are the values of the following vec(B) xx vec(A) , " if " vec(A...

    Text Solution

    |

  15. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  16. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  17. If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k...

    Text Solution

    |

  18. Find the cross product vec(r ) xx vec(F) " given " vec(F ) = hat(i) + ...

    Text Solution

    |

  19. Two vectors 5hat(i) + 7hat(j) - 3hat(k) and 2 hat(i) + 2hat(j) - a hat...

    Text Solution

    |

  20. Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec...

    Text Solution

    |