Home
Class 11
PHYSICS
Given vec(A) = 2hat(i) + 3hat(j) and vec...

Given `vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j)` . What is the vector component of `vec(A)` in the direction of `vec(B)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector component of \(\vec{A}\) in the direction of \(\vec{B}\), we can follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{A} = 2\hat{i} + 3\hat{j} \] \[ \vec{B} = \hat{i} + \hat{j} \] ### Step 2: Calculate the magnitude of vector \(\vec{B}\) The magnitude of \(\vec{B}\) is calculated as follows: \[ |\vec{B}| = \sqrt{(1^2 + 1^2)} = \sqrt{2} \] ### Step 3: Calculate the dot product \(\vec{A} \cdot \vec{B}\) The dot product of \(\vec{A}\) and \(\vec{B}\) is given by: \[ \vec{A} \cdot \vec{B} = (2\hat{i} + 3\hat{j}) \cdot (\hat{i} + \hat{j}) = 2 \cdot 1 + 3 \cdot 1 = 2 + 3 = 5 \] ### Step 4: Calculate the component of \(\vec{A}\) in the direction of \(\vec{B}\) The component of \(\vec{A}\) in the direction of \(\vec{B}\) is given by: \[ \text{Component of } \vec{A} \text{ along } \vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} \] Substituting the values we calculated: \[ \text{Component of } \vec{A} \text{ along } \vec{B} = \frac{5}{\sqrt{2}} \] ### Step 5: Find the unit vector in the direction of \(\vec{B}\) The unit vector \(\hat{b}\) in the direction of \(\vec{B}\) is: \[ \hat{b} = \frac{\vec{B}}{|\vec{B}|} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} \] ### Step 6: Calculate the vector component of \(\vec{A}\) in the direction of \(\vec{B}\) Now, we multiply the magnitude of the component by the unit vector: \[ \text{Vector component of } \vec{A} \text{ along } \vec{B} = \left(\frac{5}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}\right) \] \[ = \frac{5}{2} \hat{i} + \frac{5}{2} \hat{j} \] ### Final Answer Thus, the vector component of \(\vec{A}\) in the direction of \(\vec{B}\) is: \[ \frac{5}{2} \hat{i} + \frac{5}{2} \hat{j} \]

To find the vector component of \(\vec{A}\) in the direction of \(\vec{B}\), we can follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{A} = 2\hat{i} + 3\hat{j} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

IF vec(A) = 5hat(i) + 12hat(j) and vec(B) = 3hat(i) + 4hat(j) , find component of vec(A) in the direction of vec(B) .

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A) = 2hat(i) + 7 hat(j) -2hat(k) and vec(B) = 2 hat(i) - 3 hat(j) + 3hat(k) find (i) the magnitude of each other (ii) vec(A) + vec(B) , (iii) vec(A) - vec(B)

ICSE-VECTORS SCALARS ELEMENTARY CALCULUS -FROM SCALAR PRODUCT AND VECTOR PRODUCT
  1. If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) +...

    Text Solution

    |

  2. Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k...

    Text Solution

    |

  3. Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What i...

    Text Solution

    |

  4. If hat(i) and hat(j) are unit vectors x and y axes repsectively , wha...

    Text Solution

    |

  5. The result of scalar product and the vector product of two given vecto...

    Text Solution

    |

  6. The magnitude to two vectors are sqrt(61) and sqrt(78) .If their scal...

    Text Solution

    |

  7. Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j)...

    Text Solution

    |

  8. Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | v...

    Text Solution

    |

  9. Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) ...

    Text Solution

    |

  10. The diagonals of a parallelogram are given by the vectors (3 hat(i) + ...

    Text Solution

    |

  11. Obtain the condition for the two vectors vec(A) = x(1) hat(i) + y(1)ha...

    Text Solution

    |

  12. What are the values of the following vec(A) . vec(A)

    Text Solution

    |

  13. What are the values of the following vec(A) xx vec(A)

    Text Solution

    |

  14. What are the values of the following vec(B) xx vec(A) , " if " vec(A...

    Text Solution

    |

  15. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  16. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  17. If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k...

    Text Solution

    |

  18. Find the cross product vec(r ) xx vec(F) " given " vec(F ) = hat(i) + ...

    Text Solution

    |

  19. Two vectors 5hat(i) + 7hat(j) - 3hat(k) and 2 hat(i) + 2hat(j) - a hat...

    Text Solution

    |

  20. Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec...

    Text Solution

    |