Home
Class 11
PHYSICS
Simplify : (i) | vec(a).vec(b)|^(2) +| v...

Simplify : (i) `| vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2)` (ii) `| vec(a).vec(b)|^(2)- |vec(a) xx vec(b)|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the given expressions, we will use the properties of dot and cross products of vectors. Let's break down the solution step by step for both parts. ### Part (i): Simplify \( |\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2 \) 1. **Recall the definitions**: - The dot product of two vectors \( \vec{a} \) and \( \vec{b} \) is given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] - The cross product of two vectors \( \vec{a} \) and \( \vec{b} \) is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] 2. **Calculate \( |\vec{a} \cdot \vec{b}|^2 \)**: \[ |\vec{a} \cdot \vec{b}|^2 = (|\vec{a}| |\vec{b}| \cos \theta)^2 = |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta \] 3. **Calculate \( |\vec{a} \times \vec{b}|^2 \)**: \[ |\vec{a} \times \vec{b}|^2 = (|\vec{a}| |\vec{b}| \sin \theta)^2 = |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta \] 4. **Combine the results**: \[ |\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta + |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta \] 5. **Factor out common terms**: \[ = |\vec{a}|^2 |\vec{b}|^2 (\cos^2 \theta + \sin^2 \theta) \] 6. **Use the Pythagorean identity**: \[ \cos^2 \theta + \sin^2 \theta = 1 \] 7. **Final result for part (i)**: \[ = |\vec{a}|^2 |\vec{b}|^2 \cdot 1 = |\vec{a}|^2 |\vec{b}|^2 \] ### Part (ii): Simplify \( |\vec{a} \cdot \vec{b}|^2 - |\vec{a} \times \vec{b}|^2 \) 1. **Using the results from part (i)**: - We already have: \[ |\vec{a} \cdot \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta \] \[ |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta \] 2. **Combine the results**: \[ |\vec{a} \cdot \vec{b}|^2 - |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta - |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta \] 3. **Factor out common terms**: \[ = |\vec{a}|^2 |\vec{b}|^2 (\cos^2 \theta - \sin^2 \theta) \] 4. **Use the double angle identity**: \[ \cos^2 \theta - \sin^2 \theta = \cos 2\theta \] 5. **Final result for part (ii)**: \[ = |\vec{a}|^2 |\vec{b}|^2 \cos 2\theta \] ### Summary of Results - For part (i): \( |\vec{a}|^2 |\vec{b}|^2 \) - For part (ii): \( |\vec{a}|^2 |\vec{b}|^2 \cos 2\theta \)

To simplify the given expressions, we will use the properties of dot and cross products of vectors. Let's break down the solution step by step for both parts. ### Part (i): Simplify \( |\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2 \) 1. **Recall the definitions**: - The dot product of two vectors \( \vec{a} \) and \( \vec{b} \) is given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following |vec(a).vec(b)|^(2)-|vec(a)xx vec(b)|^(2)

Find the value of the following | vec(a). vec(b)|^(2)+|vec(a)xx vec(b)|^(2)

Find vec(a) * vec(b) if |vec(a)| = 6, |vec(b)| = 4 and |vec(a) xx vec(b)| = 12

if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) | =4 then |vec(b) | is equal to

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

If vec(a).vec(b)=0 and vec(a) xx vec(b)=0, " prove that " vec(a)= vec(0) or vec(b)=vec(0) .

Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec(A))

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

If (vec(a) + vec(b)) _|_ vec(b) and (vec(a) + 2 vec(b))_|_ vec(a) , then

ICSE-VECTORS SCALARS ELEMENTARY CALCULUS -FROM SCALAR PRODUCT AND VECTOR PRODUCT
  1. If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) +...

    Text Solution

    |

  2. Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k...

    Text Solution

    |

  3. Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What i...

    Text Solution

    |

  4. If hat(i) and hat(j) are unit vectors x and y axes repsectively , wha...

    Text Solution

    |

  5. The result of scalar product and the vector product of two given vecto...

    Text Solution

    |

  6. The magnitude to two vectors are sqrt(61) and sqrt(78) .If their scal...

    Text Solution

    |

  7. Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j)...

    Text Solution

    |

  8. Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | v...

    Text Solution

    |

  9. Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) ...

    Text Solution

    |

  10. The diagonals of a parallelogram are given by the vectors (3 hat(i) + ...

    Text Solution

    |

  11. Obtain the condition for the two vectors vec(A) = x(1) hat(i) + y(1)ha...

    Text Solution

    |

  12. What are the values of the following vec(A) . vec(A)

    Text Solution

    |

  13. What are the values of the following vec(A) xx vec(A)

    Text Solution

    |

  14. What are the values of the following vec(B) xx vec(A) , " if " vec(A...

    Text Solution

    |

  15. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  16. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  17. If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k...

    Text Solution

    |

  18. Find the cross product vec(r ) xx vec(F) " given " vec(F ) = hat(i) + ...

    Text Solution

    |

  19. Two vectors 5hat(i) + 7hat(j) - 3hat(k) and 2 hat(i) + 2hat(j) - a hat...

    Text Solution

    |

  20. Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec...

    Text Solution

    |