Home
Class 11
PHYSICS
Find the angle between vec(A) = hat(i) ...

Find the angle between `vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{A} = \hat{i} + 2\hat{j} - \hat{k}\) and \(\vec{B} = -\hat{i} + \hat{j} - 2\hat{k}\), we can use the formula for the dot product of two vectors: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \] where \(\theta\) is the angle between the vectors. ### Step 1: Calculate the dot product \(\vec{A} \cdot \vec{B}\) \[ \vec{A} \cdot \vec{B} = (1)(-1) + (2)(1) + (-1)(-2) \] \[ = -1 + 2 + 2 = 3 \] ### Step 2: Calculate the magnitudes of \(\vec{A}\) and \(\vec{B}\) For \(\vec{A}\): \[ |\vec{A}| = \sqrt{(1)^2 + (2)^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \] For \(\vec{B}\): \[ |\vec{B}| = \sqrt{(-1)^2 + (1)^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] ### Step 3: Substitute into the cosine formula Using the dot product and the magnitudes calculated: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{3}{\sqrt{6} \cdot \sqrt{6}} = \frac{3}{6} = \frac{1}{2} \] ### Step 4: Find the angle \(\theta\) To find \(\theta\), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{1}{2}\right) \] \[ \theta = 60^\circ \] ### Final Answer The angle between the vectors \(\vec{A}\) and \(\vec{B}\) is \(60^\circ\). ---

To find the angle between the vectors \(\vec{A} = \hat{i} + 2\hat{j} - \hat{k}\) and \(\vec{B} = -\hat{i} + \hat{j} - 2\hat{k}\), we can use the formula for the dot product of two vectors: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \] where \(\theta\) is the angle between the vectors. ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

If the vectors given by vec(A) = hat(i) + 2hat(j) + 2hat(k) and vec(B) = hat(i) - hat(j) + n hat(k) are prerpendicular to each other find the value of n .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Angle between the vectors vec(a)=-hat(i)+2hat(j)+hat(k) and vec(b)=xhat(i)+hat(j)+(x+1)hat(k)

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

What is the angle between the following pair of vectors? vec(A)=hat(i)+hat(j)+hat(k) and vec(B)=-2hat(i)-2hat(j)-2hat(k) .

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

ICSE-VECTORS SCALARS ELEMENTARY CALCULUS -FROM SCALAR PRODUCT AND VECTOR PRODUCT
  1. If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) +...

    Text Solution

    |

  2. Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k...

    Text Solution

    |

  3. Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What i...

    Text Solution

    |

  4. If hat(i) and hat(j) are unit vectors x and y axes repsectively , wha...

    Text Solution

    |

  5. The result of scalar product and the vector product of two given vecto...

    Text Solution

    |

  6. The magnitude to two vectors are sqrt(61) and sqrt(78) .If their scal...

    Text Solution

    |

  7. Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j)...

    Text Solution

    |

  8. Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | v...

    Text Solution

    |

  9. Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) ...

    Text Solution

    |

  10. The diagonals of a parallelogram are given by the vectors (3 hat(i) + ...

    Text Solution

    |

  11. Obtain the condition for the two vectors vec(A) = x(1) hat(i) + y(1)ha...

    Text Solution

    |

  12. What are the values of the following vec(A) . vec(A)

    Text Solution

    |

  13. What are the values of the following vec(A) xx vec(A)

    Text Solution

    |

  14. What are the values of the following vec(B) xx vec(A) , " if " vec(A...

    Text Solution

    |

  15. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  16. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  17. If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k...

    Text Solution

    |

  18. Find the cross product vec(r ) xx vec(F) " given " vec(F ) = hat(i) + ...

    Text Solution

    |

  19. Two vectors 5hat(i) + 7hat(j) - 3hat(k) and 2 hat(i) + 2hat(j) - a hat...

    Text Solution

    |

  20. Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec...

    Text Solution

    |