Home
Class 11
PHYSICS
The diagonals of a parallelogram are giv...

The diagonals of a parallelogram are given by the vectors `(3 hat(i) + hat(j) + 2hat(k)) and ( hat(i) - 3hat(j) + 4hat(k))` in m . Find the area of the parallelogram .

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the parallelogram given the diagonals represented by the vectors \( \mathbf{d_1} = 3\hat{i} + \hat{j} + 2\hat{k} \) and \( \mathbf{d_2} = \hat{i} - 3\hat{j} + 4\hat{k} \), we can follow these steps: ### Step 1: Identify the vectors The diagonals of the parallelogram are given as: \[ \mathbf{d_1} = 3\hat{i} + \hat{j} + 2\hat{k} \] \[ \mathbf{d_2} = \hat{i} - 3\hat{j} + 4\hat{k} \] ### Step 2: Calculate the cross product \( \mathbf{d_1} \times \mathbf{d_2} \) To find the area of the parallelogram, we need to compute the cross product of the two diagonal vectors. The formula for the cross product in determinant form is: \[ \mathbf{d_1} \times \mathbf{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 2 \\ 1 & -3 & 4 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant, we expand it as follows: \[ \mathbf{d_1} \times \mathbf{d_2} = \hat{i} \begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 1 & -3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix} = (1)(4) - (2)(-3) = 4 + 6 = 10 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} = (3)(4) - (2)(1) = 12 - 2 = 10 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & 1 \\ 1 & -3 \end{vmatrix} = (3)(-3) - (1)(1) = -9 - 1 = -10 \] Putting it all together: \[ \mathbf{d_1} \times \mathbf{d_2} = 10\hat{i} - 10\hat{j} - 10\hat{k} \] ### Step 4: Find the magnitude of the cross product Now, we find the magnitude of the vector \( \mathbf{d_1} \times \mathbf{d_2} \): \[ |\mathbf{d_1} \times \mathbf{d_2}| = \sqrt{(10)^2 + (-10)^2 + (-10)^2} = \sqrt{100 + 100 + 100} = \sqrt{300} = 10\sqrt{3} \] ### Step 5: Calculate the area of the parallelogram The area \( A \) of the parallelogram is given by: \[ A = \frac{1}{2} |\mathbf{d_1} \times \mathbf{d_2}| = \frac{1}{2} (10\sqrt{3}) = 5\sqrt{3} \] ### Step 6: Approximate the area Using \( \sqrt{3} \approx 1.73 \): \[ A \approx 5 \times 1.73 \approx 8.65 \, \text{m}^2 \] Thus, the area of the parallelogram is approximately \( 8.65 \, \text{m}^2 \).

To find the area of the parallelogram given the diagonals represented by the vectors \( \mathbf{d_1} = 3\hat{i} + \hat{j} + 2\hat{k} \) and \( \mathbf{d_2} = \hat{i} - 3\hat{j} + 4\hat{k} \), we can follow these steps: ### Step 1: Identify the vectors The diagonals of the parallelogram are given as: \[ \mathbf{d_1} = 3\hat{i} + \hat{j} + 2\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat(j) + 3hat(k) and q = 3hat(i) + 2hat(j) - hat(k) . Then the area of the parallelogram is :

Two adjacent sides of a parallelogram are respectively by the two vectors hat(i)+2hat(j)+3hat(k) and 3hat(i)-2hat(j)+hat(k) . What is the area of parallelogram?

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The adjacent sides of a parallelogram are hat(i) + 2 hat(j) + 3 hat(k) and 2 hat (i) - hat(j) + hat(k) . Find the unit vectors parallel to diagonals.

Find the area of the parallelogram determined by the vectors: 2 hat i+ hat j+3 hat k\ a n d\ hat i- hat j

Find the area of parallelogram whose adjacent sides are represented by the vectors 3hat(i)+hat(j)-2hat(k) and hat(i)-2hat(j)-hat(k) .

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

ICSE-VECTORS SCALARS ELEMENTARY CALCULUS -FROM SCALAR PRODUCT AND VECTOR PRODUCT
  1. If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) +...

    Text Solution

    |

  2. Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k...

    Text Solution

    |

  3. Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What i...

    Text Solution

    |

  4. If hat(i) and hat(j) are unit vectors x and y axes repsectively , wha...

    Text Solution

    |

  5. The result of scalar product and the vector product of two given vecto...

    Text Solution

    |

  6. The magnitude to two vectors are sqrt(61) and sqrt(78) .If their scal...

    Text Solution

    |

  7. Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j)...

    Text Solution

    |

  8. Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | v...

    Text Solution

    |

  9. Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) ...

    Text Solution

    |

  10. The diagonals of a parallelogram are given by the vectors (3 hat(i) + ...

    Text Solution

    |

  11. Obtain the condition for the two vectors vec(A) = x(1) hat(i) + y(1)ha...

    Text Solution

    |

  12. What are the values of the following vec(A) . vec(A)

    Text Solution

    |

  13. What are the values of the following vec(A) xx vec(A)

    Text Solution

    |

  14. What are the values of the following vec(B) xx vec(A) , " if " vec(A...

    Text Solution

    |

  15. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  16. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  17. If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k...

    Text Solution

    |

  18. Find the cross product vec(r ) xx vec(F) " given " vec(F ) = hat(i) + ...

    Text Solution

    |

  19. Two vectors 5hat(i) + 7hat(j) - 3hat(k) and 2 hat(i) + 2hat(j) - a hat...

    Text Solution

    |

  20. Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec...

    Text Solution

    |