Home
Class 11
PHYSICS
If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(...

If `vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) ` , find the sine of the angle between `vec(a) and vec(B) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the sine of the angle between the vectors \(\vec{A}\) and \(\vec{B}\), we will use the formula involving the cross product of the two vectors. The formula states: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] From this, we can express \(\sin \theta\) as: \[ \sin \theta = \frac{|\vec{A} \times \vec{B}|}{|\vec{A}| |\vec{B}|} \] ### Step 1: Define the vectors Given: \[ \vec{A} = 5 \hat{i} - 3 \hat{j} + 4 \hat{k} \] \[ \vec{B} = \hat{j} - \hat{k} \] ### Step 2: Calculate the cross product \(\vec{A} \times \vec{B}\) Using the determinant method to find the cross product: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & -3 & 4 \\ 0 & 1 & -1 \end{vmatrix} \] Calculating the determinant: 1. For \(\hat{i}\): \[ \hat{i} \left((-3)(-1) - (4)(1)\right) = \hat{i}(3 - 4) = -\hat{i} \] 2. For \(\hat{j}\): \[ -\hat{j} \left((5)(-1) - (4)(0)\right) = -\hat{j}(-5) = 5\hat{j} \] 3. For \(\hat{k}\): \[ \hat{k} \left((5)(1) - (-3)(0)\right) = \hat{k}(5) = 5\hat{k} \] Putting it all together: \[ \vec{A} \times \vec{B} = -\hat{i} + 5\hat{j} + 5\hat{k} \] ### Step 3: Calculate the magnitude of \(\vec{A} \times \vec{B}\) \[ |\vec{A} \times \vec{B}| = \sqrt{(-1)^2 + 5^2 + 5^2} = \sqrt{1 + 25 + 25} = \sqrt{51} \] ### Step 4: Calculate the magnitudes of \(\vec{A}\) and \(\vec{B}\) 1. Magnitude of \(\vec{A}\): \[ |\vec{A}| = \sqrt{5^2 + (-3)^2 + 4^2} = \sqrt{25 + 9 + 16} = \sqrt{50} \] 2. Magnitude of \(\vec{B}\): \[ |\vec{B}| = \sqrt{0^2 + 1^2 + (-1)^2} = \sqrt{0 + 1 + 1} = \sqrt{2} \] ### Step 5: Substitute values into the sine formula Now substituting the values into the formula for \(\sin \theta\): \[ \sin \theta = \frac{|\vec{A} \times \vec{B}|}{|\vec{A}| |\vec{B}|} = \frac{\sqrt{51}}{\sqrt{50} \cdot \sqrt{2}} = \frac{\sqrt{51}}{\sqrt{100}} = \frac{\sqrt{51}}{10} \] ### Final Answer Thus, the sine of the angle between \(\vec{A}\) and \(\vec{B}\) is: \[ \sin \theta = \frac{\sqrt{51}}{10} \approx 0.7141 \]

To find the sine of the angle between the vectors \(\vec{A}\) and \(\vec{B}\), we will use the formula involving the cross product of the two vectors. The formula states: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] From this, we can express \(\sin \theta\) as: ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?

If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

ICSE-VECTORS SCALARS ELEMENTARY CALCULUS -FROM SCALAR PRODUCT AND VECTOR PRODUCT
  1. If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) +...

    Text Solution

    |

  2. Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k...

    Text Solution

    |

  3. Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What i...

    Text Solution

    |

  4. If hat(i) and hat(j) are unit vectors x and y axes repsectively , wha...

    Text Solution

    |

  5. The result of scalar product and the vector product of two given vecto...

    Text Solution

    |

  6. The magnitude to two vectors are sqrt(61) and sqrt(78) .If their scal...

    Text Solution

    |

  7. Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j)...

    Text Solution

    |

  8. Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | v...

    Text Solution

    |

  9. Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) ...

    Text Solution

    |

  10. The diagonals of a parallelogram are given by the vectors (3 hat(i) + ...

    Text Solution

    |

  11. Obtain the condition for the two vectors vec(A) = x(1) hat(i) + y(1)ha...

    Text Solution

    |

  12. What are the values of the following vec(A) . vec(A)

    Text Solution

    |

  13. What are the values of the following vec(A) xx vec(A)

    Text Solution

    |

  14. What are the values of the following vec(B) xx vec(A) , " if " vec(A...

    Text Solution

    |

  15. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  16. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  17. If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k...

    Text Solution

    |

  18. Find the cross product vec(r ) xx vec(F) " given " vec(F ) = hat(i) + ...

    Text Solution

    |

  19. Two vectors 5hat(i) + 7hat(j) - 3hat(k) and 2 hat(i) + 2hat(j) - a hat...

    Text Solution

    |

  20. Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec...

    Text Solution

    |