Home
Class 11
PHYSICS
Find the cross product vec(r ) xx vec(F)...

Find the cross product `vec(r ) xx vec(F) " given " vec(F ) = hat(i) + hat(j) + hat(k) and vec (r )` is the distance between two points whose coordinates are `(-2,3,4) and (1,2,3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cross product \(\vec{r} \times \vec{F}\), we first need to determine the vector \(\vec{r}\) based on the coordinates of the two points given. ### Step-by-Step Solution: 1. **Identify the Coordinates of the Points**: The coordinates of the two points are: - Point 1: \((-2, 3, 4)\) - Point 2: \((1, 2, 3)\) 2. **Calculate the Vector \(\vec{r}\)**: The vector \(\vec{r}\) is defined as the difference between the position vectors of the two points: \[ \vec{r} = \vec{r_2} - \vec{r_1} \] Where: - \(\vec{r_1} = -2\hat{i} + 3\hat{j} + 4\hat{k}\) - \(\vec{r_2} = 1\hat{i} + 2\hat{j} + 3\hat{k}\) Therefore, we calculate: \[ \vec{r} = (1 - (-2))\hat{i} + (2 - 3)\hat{j} + (3 - 4)\hat{k} \] Simplifying this gives: \[ \vec{r} = (1 + 2)\hat{i} + (2 - 3)\hat{j} + (3 - 4)\hat{k} = 3\hat{i} - 1\hat{j} - 1\hat{k} \] 3. **Define the Force Vector \(\vec{F}\)**: The force vector is given as: \[ \vec{F} = \hat{i} + \hat{j} + \hat{k} \] 4. **Set Up the Cross Product**: The cross product \(\vec{r} \times \vec{F}\) can be calculated using the determinant of a matrix: \[ \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & -1 \\ 1 & 1 & 1 \end{vmatrix} \] 5. **Calculate the Determinant**: Expanding the determinant: \[ \vec{r} \times \vec{F} = \hat{i} \begin{vmatrix} -1 & -1 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} \] Now calculating each of the 2x2 determinants: - For \(\hat{i}\): \[ \begin{vmatrix} -1 & -1 \\ 1 & 1 \end{vmatrix} = (-1)(1) - (-1)(1) = -1 + 1 = 0 \] - For \(-\hat{j}\): \[ \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} = (3)(1) - (-1)(1) = 3 + 1 = 4 \] - For \(\hat{k}\): \[ \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} = (3)(1) - (-1)(1) = 3 + 1 = 4 \] 6. **Combine the Results**: Putting it all together: \[ \vec{r} \times \vec{F} = 0\hat{i} - 4\hat{j} + 4\hat{k} = -4\hat{j} + 4\hat{k} \] 7. **Final Result**: Thus, the cross product \(\vec{r} \times \vec{F}\) is: \[ \vec{r} \times \vec{F} = 4\hat{k} - 4\hat{j} \]

To find the cross product \(\vec{r} \times \vec{F}\), we first need to determine the vector \(\vec{r}\) based on the coordinates of the two points given. ### Step-by-Step Solution: 1. **Identify the Coordinates of the Points**: The coordinates of the two points are: - Point 1: \((-2, 3, 4)\) - Point 2: \((1, 2, 3)\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Find the projection of vec a on vec b , if vec a . vec b =8 and vec b=2 hat i + 6 hat j + 3 hat k .

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot

If |vec(a) | =2, | vec(b) |=7 and vec(a) xx vec(b) = 3 hat(i) + 2hat(j) +6 hat(k) , then the angle between vec(a) and vec(b) is

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Find the magnitude of vec a give by vec a=( hat i+2 hat j-2 hat k)xx(- hat i+3 hat k)

ICSE-VECTORS SCALARS ELEMENTARY CALCULUS -FROM SCALAR PRODUCT AND VECTOR PRODUCT
  1. If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) +...

    Text Solution

    |

  2. Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k...

    Text Solution

    |

  3. Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What i...

    Text Solution

    |

  4. If hat(i) and hat(j) are unit vectors x and y axes repsectively , wha...

    Text Solution

    |

  5. The result of scalar product and the vector product of two given vecto...

    Text Solution

    |

  6. The magnitude to two vectors are sqrt(61) and sqrt(78) .If their scal...

    Text Solution

    |

  7. Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j)...

    Text Solution

    |

  8. Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | v...

    Text Solution

    |

  9. Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) ...

    Text Solution

    |

  10. The diagonals of a parallelogram are given by the vectors (3 hat(i) + ...

    Text Solution

    |

  11. Obtain the condition for the two vectors vec(A) = x(1) hat(i) + y(1)ha...

    Text Solution

    |

  12. What are the values of the following vec(A) . vec(A)

    Text Solution

    |

  13. What are the values of the following vec(A) xx vec(A)

    Text Solution

    |

  14. What are the values of the following vec(B) xx vec(A) , " if " vec(A...

    Text Solution

    |

  15. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  16. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  17. If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k...

    Text Solution

    |

  18. Find the cross product vec(r ) xx vec(F) " given " vec(F ) = hat(i) + ...

    Text Solution

    |

  19. Two vectors 5hat(i) + 7hat(j) - 3hat(k) and 2 hat(i) + 2hat(j) - a hat...

    Text Solution

    |

  20. Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec...

    Text Solution

    |