Home
Class 11
MATHS
z=i^5 then the value of (z+z^2+z^3+z^4)...

`z=i^5` then the value of `(z+z^2+z^3+z^4)`

A

1

B

(-i)

C

0

D

(-1)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PATHFINDER|Exercise QUESTION BANK|224 Videos
  • CONIC SECTION

    PATHFINDER|Exercise QUESTION BANK|25 Videos

Similar Questions

Explore conceptually related problems

if z^2+z+1=0 , then the value of (z+1/z)^2+(z^2+1/z^2)^2+(z^3+1/z^3)^2+......+(z^21+1/z^21)^2 is

If z^(2)+z+1=0 , then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+.......+(z^(7)+(1)/(z^(7)))^2 will be

If iz^3+z^2-z+i=0 then the value of abs(z) is

If |z-3|=min{|z-1|,|z-5|}, then the values of Re(z) will be

If Z=(sqrt3+i)/2 ,then the value of z^69 is

If z=4+isqrt(7) , then find the value of z^2-4z^2-9z+91.

If z=(sqrt3-i)/2 , then Find the. value of z^33

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to