Home
Class 11
MATHS
In triangleABC if c^2=a^2+b^2 then 4s(s-...

In `triangleABC` if `c^2=a^2+b^2` then 4s(s-a)(s-b)(s-c)=

A

`s^4`

B

`c^2a^2`

C

`a^2b^2`

D

`b^2c^2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATION AND INVERSE

    PATHFINDER|Exercise QUESTION BANK|195 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    PATHFINDER|Exercise QUESTION BANK|241 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are the sides of a triangle and s=(a+b+c)/2 , prove that 8(s-a)(s-b)(s-c)leabc .

In triangleABC,sin((B+C)/2) =

In triangleABC , if cos 'A/2' = sqrt((b+c)/(2c)) , then-

The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (s-b) (s-c) (s-d) , where 2s = a + b ++ c + d, a, b, c and d are the sides of the quadrilateral Now consider a cyclic quadrilateral ABCD of area 1 sq. unit and answer the following question The minium perimeter of the quadrilateral is

If in triangleABC ,a^4+b^4+c^4=2c^2(a^2+b^2) then find angleC

The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (s-b) (s-c) (s-d) , where 2s = a + b ++ c + d, a, b, c and d are the sides of the quadrilateral Now consider a cyclic quadrilateral ABCD of area 1 sq. unit and answer the following question When the perimeter is minimum, the quadrilateral is necessarily

The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (s-b) (s-c) (s-d) , where 2s = a + b ++ c + d, a, b, c and d are the sides of the quadrilateral Now consider a cyclic quadrilateral ABCD of area 1 sq. unit and answer the following question The minimum value of the sum of the lenghts of diagonals is

In triangleABC if a/(b+c)=tan(A/2) the show that A+C=pi/2

In Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c)=

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

PATHFINDER-TRIGONOMETRIC FUNCTIONS-QUESTION BANK
  1. In triangleABC if C=pi/2 then the greatest value of sinAsinB is

    Text Solution

    |

  2. If in a triangle ABC ,(a-b+c)/a=b/(b+c-a) then angleC=

    Text Solution

    |

  3. In triangleABC if c^2=a^2+b^2 then 4s(s-a)(s-b)(s-c)=

    Text Solution

    |

  4. If in triangleABC a=3cm,b=5cm and angle C=120^@ then c=

    Text Solution

    |

  5. If 2cosA=sinB/sinC then show that the triangle is an isosceles triangl...

    Text Solution

    |

  6. If (sinA)/3=(sin B)/3=(sin C)/4 then prove that cosC=1/9

    Text Solution

    |

  7. The lengths of sides of triangle ABC are a units, b units and sqrt(a^2...

    Text Solution

    |

  8. For any triangleABC show that c^2(sin^2B-sin^2A)+b^2(sin^2A-sin^2C)+a^...

    Text Solution

    |

  9. Prove that for a triangle ABC, (a^2-b^2-c^2) tan A+(a^2-b^2+c^2)tan B=...

    Text Solution

    |

  10. In any triangle ABC prove that sin2A+sin2B+sin2C=(abc)/(2R^3)

    Text Solution

    |

  11. If (a+b+c)(b+c-a)=3bc then show that angleA=pi/3

    Text Solution

    |

  12. If the angles of the triangle ABC are in A.P. and b:c=sqrt3:sqrt2 then...

    Text Solution

    |

  13. For triangleABC prove that (sin A+sin B)(sin B+sin C)(sin C+sin A)gtsi...

    Text Solution

    |

  14. If in triangleABC, (2cosA)/a+(cosB)/b+(2cosC)/c=a/(bc)+b/(ca) then de...

    Text Solution

    |

  15. If sin A/sin C=sin(A-B)/sin(B-C) then show that a^2,b^2,c^2 are in ari...

    Text Solution

    |

  16. a,b,c are the lengths of sides of triangleABC and 1/(a+c)+1/(b+c)=3/(a...

    Text Solution

    |

  17. In triangleABC show that a=bcosC+ccosB

    Text Solution

    |

  18. In triangleABC if angleA=60^@ then show that (b+c)/a=2cos((B-C)/2)

    Text Solution

    |

  19. For any triangle ABC show that a sin(B-C)+bsin(C-A)+csin(A-B)=0

    Text Solution

    |

  20. In triangleABC angleC=90^@ then show that (a^2+b^2)/(a^2-b^2)sin(A-B)...

    Text Solution

    |