Home
Class 11
MATHS
f(x)=e^x.g(x),g(0)=2 and g'(0)=1 then f'...

`f(x)=e^x.g(x)`,`g(0)=2` and `g'(0)=1` then `f'(0)=`

Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    PATHFINDER|Exercise QUESTION BANK|25 Videos
  • FUNCTION

    PATHFINDER|Exercise QUESTION BANK|296 Videos

Similar Questions

Explore conceptually related problems

If f(x)=e^xg(2x),g(0)=4 and g'(0) = 2 then f'(0) is equal to

If f(x)=(e^(x))/(g(x)),g(0)=6,g'(0)=2 , then f'(0) is

Let f(x)=(g(x))/x when x!=0 and f(0)=0. If g(0)=g^(prime)(0)=0 and g^ " (0)=17 then f^(prime)(0)= a). 3/4 b). -1/2 c). 17/3 d). 17/2

Fill in the blank : If f(x)=e^(x),g(x)=2log_(e)x" and "F(x)=f{g(x)} , then (dF)/(dx) = _________ .

If y=g{g(x)}, g(0)=0 and g'(0)=2 then find dy/dx at x=0

f(x) and g(x) are two differentiable functions on [0, 2] such that f''(x)-g''(x)=0, f'(1)=2, g'(1)=4, f(2)=3 and g(2)=9 , then [f(x)-g(x)] at x=(3)/(2) is equal to -

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

If the function f(x)=x^(3)+e^((x)/(2)) and g(x)=f^(-1)(x) , then the value of g'(1) is

f(x)=x^2+xg'(1)+g''(2) and g(x)=x^2f(1)+xf'(x)+f''(x) . the value of g(0) is-

Let f(x)=x^(x),x in (0,oo) and let g(x) be inverse of f(x), then g'(x) must be