Home
Class 11
MATHS
y=((x^a)/(x^b))^(a+b).((x^b)/(x^c))^(b+c...

`y=((x^a)/(x^b))^(a+b).((x^b)/(x^c))^(b+c).((x^c)/(x^a))^(c+a)` then dy/dx=

A

0

B

1

C

a+b+c

D

(-(a+b+c))

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    PATHFINDER|Exercise QUESTION BANK|25 Videos
  • FUNCTION

    PATHFINDER|Exercise QUESTION BANK|296 Videos

Similar Questions

Explore conceptually related problems

Simplify : ((x^a)/(x^b))^(a^2+ab+b^2)xx((x^b)/(x^c))^(b^2+bc+c^2)xx((x^c)/(x^a))^(c^2+ca+a^2) .

Find by the definition the differential coefficient of the following: If y=(x^b/x^c)^(b+c) . (x^c/x^a)^(c+a) (x^a/x^b)^(a+b) find dy/dx

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/( (x-b)(x-c))+(c )/(x-c) +1 , prove that (dy)/(dx) =(y)/(x) [(a)/( a-x)+(b)/(b-x)+(c )/(c-x)]

Let P(x) equiv ((x-a)(x-b))/((c-a)(c-b)).c^2+((x-b)(x-c))/((a-b)(a-c)).a^2+((x-c)(x-a))/((b-c)(b-a)).b^2 Prove that P(x) has the properly that P(y) = y^2 for all y in R.

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

int (x^(3)dx)/((x-a)(x-b)(x-c))

If y=((a x+b))/((x^2+c)) , then find dy/dx .

int (x^(2) dx)/((x-a)(x-b)(x-c))

If (x-a)^(3)+(x-b)^(3)+(x-c)^(3)-3(x-a)(x-b)(x-c)=0 , then x =

(1)/(1+x^(a-b)+x^(a-c))+(1)/(1+x^(b-c)+x^(b-a))+(1)/(1+x^(c-a)+x^(c-b))