Home
Class 11
MATHS
f(x)=sin^(-1)(2xsqrt(1-x^2)) then f'(x)=...

`f(x)=sin^(-1)(2xsqrt(1-x^2))` then f'(x)=

Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    PATHFINDER|Exercise QUESTION BANK|25 Videos
  • FUNCTION

    PATHFINDER|Exercise QUESTION BANK|296 Videos

Similar Questions

Explore conceptually related problems

f(x) = sin^-1 frac(2x)(1+x^2) then

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Draw the graph of y=sin^(-1)(2xsqrt(1-x^(2)))

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x if 1/(sqrt(2)) < x < 1

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if -1/(sqrt(2)) < x < 1/(sqrt(2))

f(x)=sin^(-1)(x-1)+cos^(-1)(x-2) , then domain of f(x) is

If f(x)=2x+cos^(-1) x+log (sqrt(1+x^(2))-x) , then f(x) is-

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

2 cos^-1 x = sin^-1(2xsqrt(1 - x^2)) is valid for