Home
Class 11
MATHS
If f(2)=4 ,f'(2)=1, underset(xrarr2)Lt (...

If `f(2)=4 ,f'(2)=1`, `underset(xrarr2)Lt ((xf(2)-2f(x))/(x-2))`=?

Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    PATHFINDER|Exercise QUESTION BANK|25 Videos
  • FUNCTION

    PATHFINDER|Exercise QUESTION BANK|296 Videos

Similar Questions

Explore conceptually related problems

underset(xrarr2)"lim"(x^(5)-32)/(x-2)= ?

answer any three questions:5. if f(2)=4,f'(2)=4, then evaluate lim _(x rarr 2) (xf(2)-2f(x))/(x-2)

If f(9)=9 ,f'(9)=4, underset(xrarr9)"Lt" (sqrt f(x)-3)/(sqrtx-3)=?

If f(2)=4,f'(2)=4, then value of underset(x rarr 2)lim(xf(2)-2f(x))/(x-2) is

If f(2)=4,f'(2)=4 , then evalute lim_(xto2)(xf(2)-2f(x))/(x-2) .

if f(2)=4 and f'(2)=2 then prove that underset(xrarr2)Lt (2x^2-2f(x))/(x-2)=4

If f(2)=4,f'(2)=4 , then value of underset(x to 2)lim(xf(2)-2f(x))/(2(x-2)) is -

The function f is differentiable at x=a and its derivative be f'(a) show that underset(xrarra)Lt (xf(a)-af(x))/(x-a)=f(a)-af'(a)

If f(2) = 2, and f'(2) = 1, then the value of lim_(xrarr2)(xf(2)-2f(x))/(x-2)

f(x) is differentiable at x=a prove that underset(xrarra)Lt ((x+a)f(a)-2af(x))/(x-a)=f(a)-2af'(a)