Home
Class 11
MATHS
It is given that f'(a) exists then under...

It is given that f'(a) exists then `underset (xrarra)lim ((xf(a)-af(x))/(x-a)` is equal to

A

f(a)-af'(a)

B

f'(a)

C

(-f'(a))

D

f(a)+af'(a)

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    PATHFINDER|Exercise QUESTION BANK|25 Videos
  • FUNCTION

    PATHFINDER|Exercise QUESTION BANK|296 Videos

Similar Questions

Explore conceptually related problems

Distinguish between underset(xrarra)"lim"f(x)andf(a)

Evaluate : underset(xrarra)"lim"(xsina-asinx)/(x-a)

The function f is differentiable at x=a and its derivative be f'(a) show that underset(xrarra)Lt (xf(a)-af(x))/(x-a)=f(a)-af'(a)

Prove : underset(xrarra)"lim"(sinx-sina)/(x-a)=cosa

Find the limit (iF exists ) : underset(xrarr0)"lim"(|x|)/(x)

Prove : underset(xrarra)"lim"(tanx-tana)/(x-a)=sec^(2)a

If f(2)=4 ,f'(2)=1 , underset(xrarr2)Lt ((xf(2)-2f(x))/(x-2)) =?

If f(2)=4,f'(2)=4, then value of underset(x rarr 2)lim(xf(2)-2f(x))/(x-2) is

If a function f(x) is derivable at x = a, then show that underset(x rarr a)lim (x^(2)f(a) - a^(2)f(x))/(2(x-a)) = af(a) - 1/2(a^(2)f'(a))

f(x) is differentiable at x=a prove that underset(xrarra)Lt ((x+a)f(a)-2af(x))/(x-a)=f(a)-2af'(a)