Home
Class 11
MATHS
if f(2)=4 and f'(2)=2 then prove that un...

if `f(2)=4` and `f'(2)=2` then prove that `underset(xrarr2)Lt (2x^2-2f(x))/(x-2)=4`

Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    PATHFINDER|Exercise QUESTION BANK|25 Videos
  • FUNCTION

    PATHFINDER|Exercise QUESTION BANK|296 Videos

Similar Questions

Explore conceptually related problems

underset(xrarr2)"lim"(x^(5)-32)/(x-2)= ?

If f(2)=4,f'(2)=4, then value of underset(x rarr 2)lim(xf(2)-2f(x))/(x-2) is

If f(2)=4 ,f'(2)=1 , underset(xrarr2)Lt ((xf(2)-2f(x))/(x-2)) =?

If f(2) = 2, and f'(2) = 1, then the value of lim_(xrarr2)(xf(2)-2f(x))/(x-2)

If f(2)=4,f'(2)=4 , then value of underset(x to 2)lim(xf(2)-2f(x))/(2(x-2)) is -

f(x) is differentiable at x=a prove that underset(xrarra)Lt ((x+a)f(a)-2af(x))/(x-a)=f(a)-2af'(a)

answer any three questions:5. if f(2)=4,f'(2)=4, then evaluate lim _(x rarr 2) (xf(2)-2f(x))/(x-2)

Evaluate underset(xrarr2)"lim"(x^(2)-3x+2)/(x^(3)-4x+3)

Evaluate : underset(xrarr2)"lim"(x-sqrt(3x-2))/(x^(2)-4)

The value of underset(xrarr2)lim int_2^x (3t^2)/(x-2) dt is