Home
Class 11
MATHS
If y=secx+tanx then prove that 2(dy/dx)=...

If y=secx+tanx then prove that `2(dy/dx)=(1+y^2)`

Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    PATHFINDER|Exercise QUESTION BANK|25 Videos
  • FUNCTION

    PATHFINDER|Exercise QUESTION BANK|296 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=k , k is a constant, then prove that (dy)/(dx)=(y)/(x) .

If sqrt(1-x^6)+sqrt(1-y^6) = a(x^3-y^3) then prove that (dy)/(dx)= x^2/y^2sqrt((1-y^6)/(1-x^6))

If y=(x)/(x+2) prove that x(dy)/(dx)=y(1-y)

If sin^(-1) ((x^2-y^2)/(x^2+y^2))=k , k is a constant, then prove that (dy)/(dx)=y/x .

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y=e^x(sinx+cosx) , then prove that, (d^2y)/(dx^2)-2dy/dx+2y=0

Solve (dy)/(dx)=(1+y)^2

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

y=x^(x^(x^------infty) then prove that dy/dx=(y^2)/(x(1-ylogx))