Home
Class 11
MATHS
Find the value of x satisfying "log"a(1+...

Find the value of x satisfying `"log"_a(1+"log"_b{1+"log"_c(1+"log"_px)})=0`

Promotional Banner

Topper's Solved these Questions

  • 3D-GEOMETRY

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • BINOMIAL THEOREM

    PATHFINDER|Exercise QUESTION BANK|225 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying x+log_10(1+2^x)=x log_10 5+log_10 6 is

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Solve for 'x' 9^("log"_3("log"_2x))="log"_2x-("log"_2x)^2+1

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The value of x satisfying the equation 3sqrt(5)^((log_5) 5^(((log)_5(log)_5log_5(x/2))) = 3 1 (b) 3 (c) 18 (d) 54

Find the values : (log_(a)b)xx(log_(b)c)xx(log_(c )d)xx(log_(d)a)

If a ,b ,c ,d in R^+-{1}, then the minimum value of (log)_d a+(log)_b d+(log)_a c+(log)_c b is (a) 4 (b) 2 (c) 1 (d)none of these

If a,b,c be three distinct positive numbers, each different from 1 such that ("log"_ba"log"_ca-"log"_aa)+("log"_ab"log"_cb-"log"_b b)+("log"_ac"log"_bc-"log"_c c)=0 , then prove that abc=1

Solve : "log"_(1//2)xge"log"_(1//3)x

Find the value of log((a^n)/(b^n)) + log((b^n)/(c^n)) + log((c^n)/(a^n))