Home
Class 11
MATHS
If log7 2=a, then log(49)28 is equal to...

If `log_7 2=a`, then `log_(49)28` is equal to

A

`(1+2a)/4`

B

`(1+2a)/2`

C

`(1+2a)/3`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • 3D-GEOMETRY

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • BINOMIAL THEOREM

    PATHFINDER|Exercise QUESTION BANK|225 Videos

Similar Questions

Explore conceptually related problems

If log_(7) 2 = m , then find log_(49) 28 in terms of m.

If log_a(ab)=x then log_b(ab) is equals to

I=int(log_ex)^2dx is equal to

If y=log_(10)x , then (dy)/(dx) is equal to -

If f(x)=log_5log_3 x , then f'(e ) is equal to

If f(x)=log_(5)log_(3)x , then f'(e ) is equal to

If (a+(log)_4 3)/(a+(log)_2 3)=(a+(log)_8 3)/(a+(log)_4 3)=b ,then b is equal to 1/2 (2) 2/3 (c) 1/3 (d) 3/2

If 1, log_9(3^(1-x)+2) and log_3(4.3^x-1) are in AP , then x is equal to

If a_(n)( gt 0) be the n^(th) term of a G.P. then |(log a_(n), log a_(n+1), log a_(n+2)),(log a_(n+3), loga_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7), log a_(n+8))| is equal to

If a_1,a_2,a_3,.....a_n.... are in G.P. then the determinant Delta=|[log a_n, log a_(n+1), log a_(n+2)],[log a_(n+3),loga_(n+4),log a_(n+5)],[log a_(n+6),log a_(n+7),log a_(n+8)]| is equal to- (A) -2 (B) 1 (C) -1 (D) 0