Home
Class 11
MATHS
If log4 (x^2+x)-log4(x+1)=2, then the va...

If `log_4 (x^2+x)-log_4(x+1)=2`, then the value of x is

A

1

B

2

C

4

D

16

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • 3D-GEOMETRY

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • BINOMIAL THEOREM

    PATHFINDER|Exercise QUESTION BANK|225 Videos

Similar Questions

Explore conceptually related problems

If log_(2)x+log_(4)x+log_(16)x=21/4 find the value of x

If log_12 18=x, log_24 4=y then the value of xy-(2x+5y)+4 is

If int_(-(1)/(2))^((1)/(2)) cos x log((1+x)/(1-x))dx=k log2 , then the value of k is -

If f(x)=tan^(-1)[(log((e )/(x^(2))))/(log (ex^(2)))]+tan^(-1)[(3+2 log x)/(1-6 log x)] then the value of f''(x) is

if (log)_y x+(log)_x y=2,x^2+y=12 , the value of x y is

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then the value of x is

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

If log_(5)log_(5)log_(2)x=0 then value of x is

If int_(log_(e^(2)))^(x)(e^(x)-1)^(-1)dx="log"_(e )(3)/(2) then the value of x is