Home
Class 11
MATHS
If log12 18=x, log24 4=y then the value ...

If `log_12 18=x, log_24 4=y` then the value of xy-(2x+5y)+4 is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • 3D-GEOMETRY

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • BINOMIAL THEOREM

    PATHFINDER|Exercise QUESTION BANK|225 Videos

Similar Questions

Explore conceptually related problems

If log_(a)x=y , then the value of log_a(a/x) is

If log_4 (x^2+x)-log_4(x+1)=2 , then the value of x is

If (log)_2x+(log)_2ygeq6, then the least value of x+y is 4 (b) 8 (d) 16 (d) 32

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

If x:y = 5:6 then the value of (3x + 4y)/(4x + 3y) will be

If y=log_(a)x+log_(x)a+log_(x)x+log_(a)a , then the value of (dy)/(dx) is -

if (log)_y x+(log)_x y=2,x^2+y=12 , the value of x y is

If log_(12)18 = x and log_(24)54 = y , then show that xy + 5(x-y) = 1

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x