Home
Class 11
MATHS
If sin y = x sin(a+y), than prove that ...

If sin y = x sin(a+y), than prove that
`dy/dx=(sin^2(a+y))/sina`

Promotional Banner

Topper's Solved these Questions

  • 3D-GEOMETRY

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • BINOMIAL THEOREM

    PATHFINDER|Exercise QUESTION BANK|225 Videos

Similar Questions

Explore conceptually related problems

If siny = x sin(a+y) then show that (dy)/(dx)= (sina)/(1-2xcos a+x^2) .

If siny=x sin(a+y) , prove that, (dy)/(dx)=(sin a)/(1-2x cos a +x^(2)) .

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

(dy)/(dx)=sin(x+y)

if cos y=x cos (a+y), (a!= 0) , then show that dy/dx= cos ^2(a+y)/sin a

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If siny=x sin(a+y) , then the value of (dy)/(dx) is -

If y= 5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2))+y=0 .

(dy)/(dx)=(sin2y)/(x+tany)

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .